whisper-medium-pt / README.md
CheeLi03's picture
Upload tokenizer
7e4dd48 verified
metadata
base_model: openai/whisper-medium
datasets:
  - fleurs
language:
  - pt
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Medium Portuguese 6000 - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: pt_br
          split: None
          args: 'config: pt split: test'
        metrics:
          - type: wer
            value: 6.398382774669738
            name: Wer

Whisper Medium Portuguese 6000 - Chee Li

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2240
  • Wer: 6.3984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0071 5.0251 1000 0.1866 6.2479
0.0004 10.0503 2000 0.2069 6.3091
0.0002 15.0754 3000 0.2203 6.3561
0.0002 20.1005 4000 0.2240 6.3984

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1