llama381binstruct_summarize_short
This model is a fine-tuned version of NousResearch/Meta-Llama-3.1-8B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.9773
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7658 | 1.3158 | 25 | 1.2514 |
0.798 | 2.6316 | 50 | 1.2960 |
0.4432 | 3.9474 | 75 | 1.3901 |
0.1598 | 5.2632 | 100 | 1.6723 |
0.0867 | 6.5789 | 125 | 1.7080 |
0.0397 | 7.8947 | 150 | 1.7470 |
0.0356 | 9.2105 | 175 | 1.7648 |
0.0225 | 10.5263 | 200 | 1.7194 |
0.0122 | 11.8421 | 225 | 1.7498 |
0.0055 | 13.1579 | 250 | 1.8408 |
0.0034 | 14.4737 | 275 | 1.9249 |
0.003 | 15.7895 | 300 | 1.8917 |
0.0027 | 17.1053 | 325 | 1.8668 |
0.0023 | 18.4211 | 350 | 1.9104 |
0.0023 | 19.7368 | 375 | 1.9403 |
0.0022 | 21.0526 | 400 | 1.9561 |
0.0018 | 22.3684 | 425 | 1.9670 |
0.0019 | 23.6842 | 450 | 1.9720 |
0.002 | 25.0 | 475 | 1.9760 |
0.0015 | 26.3158 | 500 | 1.9773 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Cheselle/llama381binstruct_summarize_short
Base model
NousResearch/Meta-Llama-3.1-8B-Instruct