Update README.md
#3
by
acrastt
- opened
README.md
CHANGED
@@ -13,9 +13,9 @@ license: apache-2.0
|
|
13 |
---
|
14 |
# Model Card
|
15 |
|
16 |
-
**
|
17 |
|
18 |
-
|
19 |
|
20 |
| Metric | Value |
|
21 |
|-----------------------|-------|
|
@@ -25,15 +25,15 @@ The best 3B model on MMLU (5-shot) on the [Open LLM Leaderboard](https://hugging
|
|
25 |
| TruthfulQA (0-shot) | 37.3 |
|
26 |
| Avg. | 45.2 |
|
27 |
|
28 |
-
We
|
29 |
|
30 |
|
31 |
-
The training code and data will be open sourced later on Github(https://github.com/chi2liu/mamba-gpt-3b)
|
32 |
|
33 |
|
34 |
## Training Dataset
|
35 |
|
36 |
-
` mamba-gpt-3b-v4 ` is trained on
|
37 |
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
38 |
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
39 |
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
@@ -44,13 +44,13 @@ The training code and data will be open sourced later on Github(https://github.c
|
|
44 |
|
45 |
## Summary
|
46 |
|
47 |
-
We have fine-tuned the
|
48 |
- Base model: [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2)
|
49 |
|
50 |
|
51 |
## Usage
|
52 |
|
53 |
-
To use the model with the `transformers` library on a machine with
|
54 |
|
55 |
```bash
|
56 |
pip install transformers==4.29.2
|
@@ -58,6 +58,8 @@ pip install accelerate==0.19.0
|
|
58 |
pip install torch==2.0.0
|
59 |
```
|
60 |
|
|
|
|
|
61 |
```python
|
62 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
63 |
|
@@ -65,8 +67,8 @@ tokenizer = AutoTokenizer.from_pretrained("CobraMamba/mamba-gpt-3b-v4")
|
|
65 |
model = AutoModelForCausalLM.from_pretrained("CobraMamba/mamba-gpt-3b-v4", trust_remote_code=True, torch_dtype=torch.float16)
|
66 |
|
67 |
# we use alpaca prompt
|
68 |
-
|
69 |
-
input_ids = tokenizer.encode(
|
70 |
output = model.generate(input_ids, max_length=128, temperature=0.7)
|
71 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
72 |
print(output_text)
|
|
|
13 |
---
|
14 |
# Model Card
|
15 |
|
16 |
+
**One of the Best 3B Model! Surpassing dolly-v2-12b in the Open LLM Leaderboard!**
|
17 |
|
18 |
+
One of the best 3B model on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), with performance surpassing dolly-v2-12b!
|
19 |
|
20 |
| Metric | Value |
|
21 |
|-----------------------|-------|
|
|
|
25 |
| TruthfulQA (0-shot) | 37.3 |
|
26 |
| Avg. | 45.2 |
|
27 |
|
28 |
+
We used the SOTA(State Of The Art) [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above.
|
29 |
|
30 |
|
31 |
+
The training code and data will be open sourced later on Github(https://github.com/chi2liu/mamba-gpt-3b).
|
32 |
|
33 |
|
34 |
## Training Dataset
|
35 |
|
36 |
+
` mamba-gpt-3b-v4 ` is trained on multiple datasets:
|
37 |
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
|
38 |
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
|
39 |
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
|
|
|
44 |
|
45 |
## Summary
|
46 |
|
47 |
+
We have fine-tuned the OpenLLaMA model and surpassed the original model in multiple evaluation subtasks, making it currently one of the best performing 3B model, with comparable performance to llama-7b.
|
48 |
- Base model: [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2)
|
49 |
|
50 |
|
51 |
## Usage
|
52 |
|
53 |
+
To use the model with the `transformers` library on a machine with GPU(s), first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
|
54 |
|
55 |
```bash
|
56 |
pip install transformers==4.29.2
|
|
|
58 |
pip install torch==2.0.0
|
59 |
```
|
60 |
|
61 |
+
Then, run the following Python snippet:
|
62 |
+
|
63 |
```python
|
64 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
|
|
|
67 |
model = AutoModelForCausalLM.from_pretrained("CobraMamba/mamba-gpt-3b-v4", trust_remote_code=True, torch_dtype=torch.float16)
|
68 |
|
69 |
# we use alpaca prompt
|
70 |
+
input_content = "Your text here"
|
71 |
+
input_ids = tokenizer.encode(input_content, return_tensors="pt")
|
72 |
output = model.generate(input_ids, max_length=128, temperature=0.7)
|
73 |
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
74 |
print(output_text)
|