|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lg-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-v1 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lg-ner |
|
type: lg-ner |
|
config: lug |
|
split: test |
|
args: lug |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7987967914438503 |
|
- name: Recall |
|
type: recall |
|
value: 0.8025520483546004 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8006700167504188 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9451502831421519 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-v1 |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3188 |
|
- Precision: 0.7988 |
|
- Recall: 0.8026 |
|
- F1: 0.8007 |
|
- Accuracy: 0.9452 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 261 | 0.2915 | 0.7456 | 0.6891 | 0.7162 | 0.9240 | |
|
| 0.2284 | 2.0 | 522 | 0.2965 | 0.7393 | 0.7314 | 0.7353 | 0.9294 | |
|
| 0.2284 | 3.0 | 783 | 0.2830 | 0.7426 | 0.7576 | 0.7500 | 0.9271 | |
|
| 0.1426 | 4.0 | 1044 | 0.2710 | 0.7935 | 0.7690 | 0.7810 | 0.9387 | |
|
| 0.1426 | 5.0 | 1305 | 0.2805 | 0.8087 | 0.7636 | 0.7855 | 0.9389 | |
|
| 0.0881 | 6.0 | 1566 | 0.2992 | 0.7734 | 0.7884 | 0.7808 | 0.9404 | |
|
| 0.0881 | 7.0 | 1827 | 0.2746 | 0.8109 | 0.7864 | 0.7985 | 0.9457 | |
|
| 0.0582 | 8.0 | 2088 | 0.3149 | 0.7753 | 0.7925 | 0.7838 | 0.9400 | |
|
| 0.0582 | 9.0 | 2349 | 0.3179 | 0.7940 | 0.7945 | 0.7942 | 0.9440 | |
|
| 0.0403 | 10.0 | 2610 | 0.3188 | 0.7988 | 0.8026 | 0.8007 | 0.9452 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |
|
|