metadata
license: mit
tags:
- generated_from_trainer
datasets:
- lg-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: luganda-ner-v3
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lg-ner
type: lg-ner
config: lug
split: test
args: lug
metrics:
- name: Precision
type: precision
value: 0.7824620573355818
- name: Recall
type: recall
value: 0.7938408896492729
- name: F1
type: f1
value: 0.7881104033970276
- name: Accuracy
type: accuracy
value: 0.9543876262626263
luganda-ner-v3
This model is a fine-tuned version of xlm-roberta-large on the lg-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.2106
- Precision: 0.7825
- Recall: 0.7938
- F1: 0.7881
- Accuracy: 0.9544
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 261 | 0.3026 | 0.7257 | 0.5047 | 0.5954 | 0.9270 |
0.4863 | 2.0 | 522 | 0.2362 | 0.7214 | 0.6801 | 0.7001 | 0.9426 |
0.4863 | 3.0 | 783 | 0.2053 | 0.7226 | 0.7622 | 0.7419 | 0.9474 |
0.1814 | 4.0 | 1044 | 0.2115 | 0.7081 | 0.7802 | 0.7424 | 0.9465 |
0.1814 | 5.0 | 1305 | 0.1974 | 0.7850 | 0.7964 | 0.7907 | 0.9568 |
0.1011 | 6.0 | 1566 | 0.2106 | 0.7825 | 0.7938 | 0.7881 | 0.9544 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2