|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lg-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-v3 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lg-ner |
|
type: lg-ner |
|
config: lug |
|
split: test |
|
args: lug |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8141289437585734 |
|
- name: Recall |
|
type: recall |
|
value: 0.7971793149764943 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8055649813369528 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.952700740525628 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-v3 |
|
|
|
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the lg-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2295 |
|
- Precision: 0.8141 |
|
- Recall: 0.7972 |
|
- F1: 0.8056 |
|
- Accuracy: 0.9527 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 261 | 0.4226 | 0.6273 | 0.3606 | 0.4580 | 0.8928 | |
|
| 0.5572 | 2.0 | 522 | 0.2835 | 0.7720 | 0.6185 | 0.6868 | 0.9219 | |
|
| 0.5572 | 3.0 | 783 | 0.2740 | 0.7579 | 0.7401 | 0.7489 | 0.9311 | |
|
| 0.1745 | 4.0 | 1044 | 0.2423 | 0.7895 | 0.7683 | 0.7788 | 0.9399 | |
|
| 0.1745 | 5.0 | 1305 | 0.2273 | 0.8048 | 0.7945 | 0.7996 | 0.9498 | |
|
| 0.086 | 6.0 | 1566 | 0.2295 | 0.8141 | 0.7972 | 0.8056 | 0.9527 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |
|
|