Tiny-moe-rand
Tiny-moe-rand is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
🧩 Configuration
base_model: Corianas/Tiny_Test
gate_mode: random # one of "hidden", "cheap_embed", or "random"
dtype: bfloat16 # output dtype (float32, float16, or bfloat16)
## (optional)
# experts_per_token: 2
experts:
- source_model: Corianas/Tiny_Test
positive_prompts:
- ""
## (optional)
# negative_prompts:
# - "This is a prompt expert_model_1 should not be used for"
- source_model: Corianas/TinyTask-minipaca
positive_prompts:
- ""
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Corianas/Tiny-moe-rand"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "↨explain what a ↨mixture of ↨experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.