File size: 25,805 Bytes
c165cd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import logging
import os
import sys
import cv2
import numpy as np
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import utils
from internal import coord
from internal import checkpoints
import torch
import accelerate
from tqdm import tqdm
from torch.utils._pytree import tree_map
import torch.nn.functional as F
from skimage import measure
import trimesh
import pymeshlab as pml
configs.define_common_flags()
@torch.no_grad()
def evaluate_density(model, accelerator: accelerate.Accelerator,
points, config: configs.Config, std_value=0.0):
"""
Evaluate a signed distance function (SDF) for a batch of points.
Args:
sdf: A callable function that takes a tensor of size (N, 3) containing
3D points and returns a tensor of size (N,) with the SDF values.
points: A torch tensor containing 3D points.
Returns:
A torch tensor with the SDF values evaluated at the given points.
"""
z = []
for _, pnts in enumerate(tqdm(torch.split(points, config.render_chunk_size, dim=0),
desc="Evaluating density", leave=False,
disable=not accelerator.is_main_process)):
rays_remaining = pnts.shape[0] % accelerator.num_processes
if rays_remaining != 0:
padding = accelerator.num_processes - rays_remaining
pnts = torch.cat([pnts, torch.zeros_like(pnts[-padding:])], dim=0)
else:
padding = 0
rays_per_host = pnts.shape[0] // accelerator.num_processes
start, stop = accelerator.process_index * rays_per_host, \
(accelerator.process_index + 1) * rays_per_host
chunk_means = pnts[start:stop]
chunk_stds = torch.full_like(chunk_means[..., 0], std_value)
raw_density = model.nerf_mlp.predict_density(chunk_means[:, None], chunk_stds[:, None], no_warp=True)[0]
density = F.softplus(raw_density + model.nerf_mlp.density_bias)
density = accelerator.gather(density)
if padding > 0:
density = density[: -padding]
z.append(density)
z = torch.cat(z, dim=0)
return z
@torch.no_grad()
def evaluate_color(model, accelerator: accelerate.Accelerator,
points, config: configs.Config, std_value=0.0):
"""
Evaluate a signed distance function (SDF) for a batch of points.
Args:
sdf: A callable function that takes a tensor of size (N, 3) containing
3D points and returns a tensor of size (N,) with the SDF values.
points: A torch tensor containing 3D points.
Returns:
A torch tensor with the SDF values evaluated at the given points.
"""
z = []
for _, pnts in enumerate(tqdm(torch.split(points, config.render_chunk_size, dim=0),
desc="Evaluating color",
disable=not accelerator.is_main_process)):
rays_remaining = pnts.shape[0] % accelerator.num_processes
if rays_remaining != 0:
padding = accelerator.num_processes - rays_remaining
pnts = torch.cat([pnts, torch.zeros_like(pnts[-padding:])], dim=0)
else:
padding = 0
rays_per_host = pnts.shape[0] // accelerator.num_processes
start, stop = accelerator.process_index * rays_per_host, \
(accelerator.process_index + 1) * rays_per_host
chunk_means = pnts[start:stop]
chunk_stds = torch.full_like(chunk_means[..., 0], std_value)
chunk_viewdirs = torch.zeros_like(chunk_means)
ray_results = model.nerf_mlp(False, chunk_means[:, None, None], chunk_stds[:, None, None],
chunk_viewdirs)
rgb = ray_results['rgb'][:, 0]
rgb = accelerator.gather(rgb)
if padding > 0:
rgb = rgb[: -padding]
z.append(rgb)
z = torch.cat(z, dim=0)
return z
@torch.no_grad()
def evaluate_color_projection(model, accelerator: accelerate.Accelerator, vertices, faces, config: configs.Config):
normals = auto_normals(vertices, faces.long())
viewdirs = -normals
origins = vertices - 0.005 * viewdirs
vc = []
chunk = config.render_chunk_size
model.num_levels = 1
model.opaque_background = True
for i in tqdm(range(0, origins.shape[0], chunk),
desc="Evaluating color projection",
disable=not accelerator.is_main_process):
cur_chunk = min(chunk, origins.shape[0] - i)
rays_remaining = cur_chunk % accelerator.num_processes
rays_per_host = cur_chunk // accelerator.num_processes
if rays_remaining != 0:
padding = accelerator.num_processes - rays_remaining
rays_per_host += 1
else:
padding = 0
start = i + accelerator.process_index * rays_per_host
stop = start + rays_per_host
batch = {
'origins': origins[start:stop],
'directions': viewdirs[start:stop],
'viewdirs': viewdirs[start:stop],
'cam_dirs': viewdirs[start:stop],
'radii': torch.full_like(origins[start:stop, ..., :1], 0.000723),
'near': torch.full_like(origins[start:stop, ..., :1], 0),
'far': torch.full_like(origins[start:stop, ..., :1], 0.01),
}
batch = accelerator.pad_across_processes(batch)
with accelerator.autocast():
renderings, ray_history = model(
False,
batch,
compute_extras=False,
train_frac=1)
rgb = renderings[-1]['rgb']
acc = renderings[-1]['acc']
rgb /= acc.clamp_min(1e-5)[..., None]
rgb = rgb.clamp(0, 1)
rgb = accelerator.gather(rgb)
rgb[torch.isnan(rgb) | torch.isinf(rgb)] = 1
if padding > 0:
rgb = rgb[: -padding]
vc.append(rgb)
vc = torch.cat(vc, dim=0)
return vc
def auto_normals(verts, faces):
i0 = faces[:, 0]
i1 = faces[:, 1]
i2 = faces[:, 2]
v0 = verts[i0, :]
v1 = verts[i1, :]
v2 = verts[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0)
# Splat face normals to vertices
v_nrm = torch.zeros_like(verts)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where((v_nrm ** 2).sum(dim=-1, keepdims=True) > 1e-20, v_nrm,
torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device=verts.device))
v_nrm = F.normalize(v_nrm, dim=-1)
return v_nrm
def clean_mesh(verts, faces, v_pct=1, min_f=8, min_d=5, repair=True, remesh=True, remesh_size=0.01, logger=None, main_process=True):
# verts: [N, 3]
# faces: [N, 3]
tbar = tqdm(total=9, desc='Clean mesh', leave=False, disable=not main_process)
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, 'mesh') # will copy!
# filters
tbar.set_description('Remove unreferenced vertices')
ms.meshing_remove_unreferenced_vertices() # verts not refed by any faces
tbar.update()
if v_pct > 0:
tbar.set_description('Remove unreferenced vertices')
ms.meshing_merge_close_vertices(threshold=pml.Percentage(v_pct)) # 1/10000 of bounding box diagonal
tbar.update()
tbar.set_description('Remove duplicate faces')
ms.meshing_remove_duplicate_faces() # faces defined by the same verts
tbar.update()
tbar.set_description('Remove null faces')
ms.meshing_remove_null_faces() # faces with area == 0
tbar.update()
if min_d > 0:
tbar.set_description('Remove connected component by diameter')
ms.meshing_remove_connected_component_by_diameter(mincomponentdiag=pml.Percentage(min_d))
tbar.update()
if min_f > 0:
tbar.set_description('Remove connected component by face number')
ms.meshing_remove_connected_component_by_face_number(mincomponentsize=min_f)
tbar.update()
if repair:
# tbar.set_description('Remove t vertices')
# ms.meshing_remove_t_vertices(method=0, threshold=40, repeat=True)
tbar.set_description('Repair non manifold edges')
ms.meshing_repair_non_manifold_edges(method=0)
tbar.update()
tbar.set_description('Repair non manifold vertices')
ms.meshing_repair_non_manifold_vertices(vertdispratio=0)
tbar.update()
else:
tbar.update(2)
if remesh:
# tbar.set_description('Coord taubin smoothing')
# ms.apply_coord_taubin_smoothing()
tbar.set_description('Isotropic explicit remeshing')
ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.AbsoluteValue(remesh_size))
tbar.update()
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
if logger is not None:
logger.info(f'Mesh cleaning: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')
return verts, faces
def decimate_mesh(verts, faces, target, backend='pymeshlab', remesh=False, optimalplacement=True, logger=None):
# optimalplacement: default is True, but for flat mesh must turn False to prevent spike artifect.
_ori_vert_shape = verts.shape
_ori_face_shape = faces.shape
if backend == 'pyfqmr':
import pyfqmr
solver = pyfqmr.Simplify()
solver.setMesh(verts, faces)
solver.simplify_mesh(target_count=target, preserve_border=False, verbose=False)
verts, faces, normals = solver.getMesh()
else:
m = pml.Mesh(verts, faces)
ms = pml.MeshSet()
ms.add_mesh(m, 'mesh') # will copy!
# filters
# ms.meshing_decimation_clustering(threshold=pml.Percentage(1))
ms.meshing_decimation_quadric_edge_collapse(targetfacenum=int(target), optimalplacement=optimalplacement)
if remesh:
# ms.apply_coord_taubin_smoothing()
ms.meshing_isotropic_explicit_remeshing(iterations=3, targetlen=pml.Percentage(1))
# extract mesh
m = ms.current_mesh()
verts = m.vertex_matrix()
faces = m.face_matrix()
if logger is not None:
logger.info(f'Mesh decimation: {_ori_vert_shape} --> {verts.shape}, {_ori_face_shape} --> {faces.shape}')
return verts, faces
def main(unused_argv):
config = configs.load_config()
config.compute_visibility = True
config.exp_path = os.path.join("exp", config.exp_name)
config.mesh_path = os.path.join("exp", config.exp_name, "mesh")
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
os.makedirs(config.mesh_path, exist_ok=True)
# accelerator for DDP
accelerator = accelerate.Accelerator()
device = accelerator.device
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_extract.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
# setup model and optimizer
model = models.Model(config=config)
model = accelerator.prepare(model)
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
model.eval()
module = accelerator.unwrap_model(model)
visibility_path = os.path.join(config.mesh_path, 'visibility_mask_{:.1f}.pt'.format(config.mesh_radius))
visibility_resolution = config.visibility_resolution
if not os.path.exists(visibility_path):
logger.info('Generate visibility mask...')
# load dataset
dataset = datasets.load_dataset('train', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
num_workers=4,
shuffle=True,
batch_size=1,
collate_fn=dataset.collate_fn,
persistent_workers=True,
)
visibility_mask = torch.ones(
(1, 1, visibility_resolution, visibility_resolution, visibility_resolution), requires_grad=True
).to(device)
visibility_mask.retain_grad()
tbar = tqdm(dataloader, desc='Generating visibility grid', disable=not accelerator.is_main_process)
for index, batch in enumerate(tbar):
batch = accelerate.utils.send_to_device(batch, accelerator.device)
rendering = models.render_image(model, accelerator,
batch, False, 1, config,
verbose=False, return_weights=True)
coords = rendering['coord'].reshape(-1, 3)
weights = rendering['weights'].reshape(-1)
valid_points = coords[weights > config.valid_weight_thresh]
valid_points /= config.mesh_radius
# update mask based on ray samples
with torch.enable_grad():
out = torch.nn.functional.grid_sample(visibility_mask,
valid_points[None, None, None],
align_corners=True)
out.sum().backward()
tbar.set_postfix({"visibility_mask": (visibility_mask.grad > 0.0001).float().mean().item()})
# if index == 10:
# break
visibility_mask = (visibility_mask.grad > 0.0001).float()
if accelerator.is_main_process:
torch.save(visibility_mask.detach().cpu(), visibility_path)
else:
logger.info('Load visibility mask from {}'.format(visibility_path))
visibility_mask = torch.load(visibility_path, map_location=device)
space = config.mesh_radius * 2 / (config.visibility_resolution - 1)
logger.info("Extract mesh from visibility mask...")
visibility_mask_np = visibility_mask[0, 0].permute(2, 1, 0).detach().cpu().numpy()
verts, faces, normals, values = measure.marching_cubes(
volume=-visibility_mask_np,
level=-0.5,
spacing=(space, space, space))
verts -= config.mesh_radius
if config.extract_visibility:
meshexport = trimesh.Trimesh(verts, faces)
meshexport.export(os.path.join(config.mesh_path, "visibility_mask_{}.ply".format(config.mesh_radius)), "ply")
logger.info("Extract visibility mask done.")
# Initialize variables
crop_n = 512
grid_min = verts.min(axis=0)
grid_max = verts.max(axis=0)
space = ((grid_max - grid_min).prod() / config.mesh_voxels) ** (1 / 3)
world_size = ((grid_max - grid_min) / space).astype(np.int32)
Nx, Ny, Nz = np.maximum(1, world_size // crop_n)
crop_n_x, crop_n_y, crop_n_z = world_size // [Nx, Ny, Nz]
xs = np.linspace(grid_min[0], grid_max[0], Nx + 1)
ys = np.linspace(grid_min[1], grid_max[1], Ny + 1)
zs = np.linspace(grid_min[2], grid_max[2], Nz + 1)
# Initialize meshes list
meshes = []
# Iterate over the grid
for i in range(Nx):
for j in range(Ny):
for k in range(Nz):
logger.info(f"Process grid cell ({i + 1}/{Nx}, {j + 1}/{Ny}, {k + 1}/{Nz})...")
# Calculate grid cell boundaries
x_min, x_max = xs[i], xs[i + 1]
y_min, y_max = ys[j], ys[j + 1]
z_min, z_max = zs[k], zs[k + 1]
# Create point grid
x = np.linspace(x_min, x_max, crop_n_x)
y = np.linspace(y_min, y_max, crop_n_y)
z = np.linspace(z_min, z_max, crop_n_z)
xx, yy, zz = np.meshgrid(x, y, z, indexing="ij")
points = torch.tensor(np.vstack([xx.ravel(), yy.ravel(), zz.ravel()]).T,
dtype=torch.float,
device=device)
# Construct point pyramids
points_tmp = points.reshape(crop_n_x, crop_n_y, crop_n_z, 3)[None]
points_tmp /= config.mesh_radius
current_mask = torch.nn.functional.grid_sample(visibility_mask, points_tmp, align_corners=True)
current_mask = (current_mask > 0.0).cpu().numpy()[0, 0]
pts_density = evaluate_density(module, accelerator, points,
config, std_value=config.std_value)
# bound the vertices
points_world = coord.inv_contract(2 * points)
pts_density[points_world.norm(dim=-1) > config.mesh_max_radius] = 0.0
z = pts_density.detach().cpu().numpy()
# Skip if no surface found
valid_z = z.reshape(crop_n_x, crop_n_y, crop_n_z)[current_mask]
if valid_z.shape[0] <= 0 or (
np.min(valid_z) > config.isosurface_threshold or np.max(
valid_z) < config.isosurface_threshold
):
continue
if not (np.min(z) > config.isosurface_threshold or np.max(z) < config.isosurface_threshold):
# Extract mesh
logger.info('Extract mesh...')
z = z.astype(np.float32)
verts, faces, _, _ = measure.marching_cubes(
volume=-z.reshape(crop_n_x, crop_n_y, crop_n_z),
level=-config.isosurface_threshold,
spacing=(
(x_max - x_min) / (crop_n_x - 1),
(y_max - y_min) / (crop_n_y - 1),
(z_max - z_min) / (crop_n_z - 1),
),
mask=current_mask,
)
verts = verts + np.array([x_min, y_min, z_min])
meshcrop = trimesh.Trimesh(verts, faces)
logger.info('Extract vertices: {}, faces: {}'.format(meshcrop.vertices.shape[0],
meshcrop.faces.shape[0]))
meshes.append(meshcrop)
# Save mesh
logger.info('Concatenate mesh...')
combined_mesh = trimesh.util.concatenate(meshes)
# from https://github.com/ashawkey/stable-dreamfusion/blob/main/nerf/renderer.py
# clean
logger.info('Clean mesh...')
vertices = combined_mesh.vertices.astype(np.float32)
faces = combined_mesh.faces.astype(np.int32)
vertices, faces = clean_mesh(vertices, faces,
remesh=False, remesh_size=0.01,
logger=logger, main_process=accelerator.is_main_process)
v = torch.from_numpy(vertices).contiguous().float().to(device)
v = coord.inv_contract(2 * v)
vertices = v.detach().cpu().numpy()
f = torch.from_numpy(faces).contiguous().int().to(device)
# decimation
if config.decimate_target > 0 and faces.shape[0] > config.decimate_target:
logger.info('Decimate mesh...')
vertices, triangles = decimate_mesh(vertices, faces, config.decimate_target, logger=logger)
# import ipdb; ipdb.set_trace()
if config.vertex_color:
# batched inference to avoid OOM
logger.info('Evaluate mesh vertex color...')
if config.vertex_projection:
rgbs = evaluate_color_projection(module, accelerator, v, f, config)
else:
rgbs = evaluate_color(module, accelerator, v,
config, std_value=config.std_value)
rgbs = (rgbs * 255).detach().cpu().numpy().astype(np.uint8)
if accelerator.is_main_process:
logger.info('Export mesh (vertex color)...')
mesh = trimesh.Trimesh(vertices, faces,
vertex_colors=rgbs,
process=False) # important, process=True leads to seg fault...
mesh.export(os.path.join(config.mesh_path, 'mesh_{}.ply'.format(config.mesh_radius)))
logger.info('Finish extracting mesh.')
return
def _export(v, f, h0=2048, w0=2048, ssaa=1, name=''):
logger.info('Export mesh (atlas)...')
# v, f: torch Tensor
device = v.device
v_np = v.cpu().numpy() # [N, 3]
f_np = f.cpu().numpy() # [M, 3]
# unwrap uvs
import xatlas
import nvdiffrast.torch as dr
from sklearn.neighbors import NearestNeighbors
from scipy.ndimage import binary_dilation, binary_erosion
logger.info(f'Running xatlas to unwrap UVs for mesh: v={v_np.shape} f={f_np.shape}')
atlas = xatlas.Atlas()
atlas.add_mesh(v_np, f_np)
chart_options = xatlas.ChartOptions()
chart_options.max_iterations = 4 # for faster unwrap...
atlas.generate(chart_options=chart_options)
vmapping, ft_np, vt_np = atlas[0] # [N], [M, 3], [N, 2]
# vmapping, ft_np, vt_np = xatlas.parametrize(v_np, f_np) # [N], [M, 3], [N, 2]
vt = torch.from_numpy(vt_np.astype(np.float32)).float().to(device)
ft = torch.from_numpy(ft_np.astype(np.int64)).int().to(device)
# render uv maps
uv = vt * 2.0 - 1.0 # uvs to range [-1, 1]
uv = torch.cat((uv, torch.zeros_like(uv[..., :1]), torch.ones_like(uv[..., :1])), dim=-1) # [N, 4]
if ssaa > 1:
h = int(h0 * ssaa)
w = int(w0 * ssaa)
else:
h, w = h0, w0
if h <= 2048 and w <= 2048:
glctx = dr.RasterizeCudaContext()
else:
glctx = dr.RasterizeGLContext()
rast, _ = dr.rasterize(glctx, uv.unsqueeze(0), ft, (h, w)) # [1, h, w, 4]
xyzs, _ = dr.interpolate(v.unsqueeze(0), rast, f) # [1, h, w, 3]
mask, _ = dr.interpolate(torch.ones_like(v[:, :1]).unsqueeze(0), rast, f) # [1, h, w, 1]
# masked query
xyzs = xyzs.view(-1, 3)
mask = (mask > 0).view(-1)
feats = torch.zeros(h * w, 3, device=device, dtype=torch.float32)
if mask.any():
xyzs = xyzs[mask] # [M, 3]
# batched inference to avoid OOM
all_feats = evaluate_color(module, accelerator, xyzs,
config, std_value=config.std_value)
feats[mask] = all_feats
feats = feats.view(h, w, -1)
mask = mask.view(h, w)
# quantize [0.0, 1.0] to [0, 255]
feats = feats.cpu().numpy()
feats = (feats * 255).astype(np.uint8)
### NN search as an antialiasing ...
mask = mask.cpu().numpy()
inpaint_region = binary_dilation(mask, iterations=3)
inpaint_region[mask] = 0
search_region = mask.copy()
not_search_region = binary_erosion(search_region, iterations=2)
search_region[not_search_region] = 0
search_coords = np.stack(np.nonzero(search_region), axis=-1)
inpaint_coords = np.stack(np.nonzero(inpaint_region), axis=-1)
knn = NearestNeighbors(n_neighbors=1, algorithm='kd_tree').fit(search_coords)
_, indices = knn.kneighbors(inpaint_coords)
feats[tuple(inpaint_coords.T)] = feats[tuple(search_coords[indices[:, 0]].T)]
feats = cv2.cvtColor(feats, cv2.COLOR_RGB2BGR)
# do ssaa after the NN search, in numpy
if ssaa > 1:
feats = cv2.resize(feats, (w0, h0), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(config.mesh_path, f'{name}albedo.png'), feats)
# save obj (v, vt, f /)
obj_file = os.path.join(config.mesh_path, f'{name}mesh.obj')
mtl_file = os.path.join(config.mesh_path, f'{name}mesh.mtl')
logger.info(f'writing obj mesh to {obj_file}')
with open(obj_file, "w") as fp:
fp.write(f'mtllib {name}mesh.mtl \n')
logger.info(f'writing vertices {v_np.shape}')
for v in v_np:
fp.write(f'v {v[0]} {v[1]} {v[2]} \n')
logger.info(f'writing vertices texture coords {vt_np.shape}')
for v in vt_np:
fp.write(f'vt {v[0]} {1 - v[1]} \n')
logger.info(f'writing faces {f_np.shape}')
fp.write(f'usemtl mat0 \n')
for i in range(len(f_np)):
fp.write(
f"f {f_np[i, 0] + 1}/{ft_np[i, 0] + 1} {f_np[i, 1] + 1}/{ft_np[i, 1] + 1} {f_np[i, 2] + 1}/{ft_np[i, 2] + 1} \n")
with open(mtl_file, "w") as fp:
fp.write(f'newmtl mat0 \n')
fp.write(f'Ka 1.000000 1.000000 1.000000 \n')
fp.write(f'Kd 1.000000 1.000000 1.000000 \n')
fp.write(f'Ks 0.000000 0.000000 0.000000 \n')
fp.write(f'Tr 1.000000 \n')
fp.write(f'illum 1 \n')
fp.write(f'Ns 0.000000 \n')
fp.write(f'map_Kd {name}albedo.png \n')
# could be extremely slow
_export(v, f)
logger.info('Finish extracting mesh.')
if __name__ == '__main__':
with gin.config_scope('bake'):
app.run(main)
|