File size: 18,643 Bytes
c165cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import glob
import logging
import os
import shutil
import sys

import numpy as np
import random

import time

from absl import app
import gin
from internal import configs
from internal import datasets
from internal import image
from internal import models
from internal import train_utils
from internal import utils
from internal import vis
from internal import checkpoints
import torch
import accelerate
import tensorboardX
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
from torch.utils._pytree import tree_map

configs.define_common_flags()

TIME_PRECISION = 1000  # Internally represent integer times in milliseconds.



def main(unused_argv):
    config = configs.load_config()
    config.exp_path = os.path.join("exp", config.exp_name)
    config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
    utils.makedirs(config.exp_path)
    with utils.open_file(os.path.join(config.exp_path, 'config.gin'), 'w') as f:
        f.write(gin.config_str())

    # accelerator for DDP
    accelerator = accelerate.Accelerator()

    # setup logger
    logging.basicConfig(
        format="%(asctime)s: %(message)s",
        datefmt="%Y-%m-%d %H:%M:%S",
        force=True,
        handlers=[logging.StreamHandler(sys.stdout),
                  logging.FileHandler(os.path.join(config.exp_path, 'log_train.txt'))],
        level=logging.INFO,
    )
    sys.excepthook = utils.handle_exception
    logger = accelerate.logging.get_logger(__name__)
    logger.info(config)
    logger.info(accelerator.state, main_process_only=False)

    config.world_size = accelerator.num_processes
    config.global_rank = accelerator.process_index
    if config.batch_size % accelerator.num_processes != 0:
        config.batch_size -= config.batch_size % accelerator.num_processes != 0
        logger.info('turn batch size to', config.batch_size)

    # Set random seed.
    accelerate.utils.set_seed(config.seed, device_specific=True)
    # setup model and optimizer
    model = models.Model(config=config)
    optimizer, lr_fn = train_utils.create_optimizer(config, model)

    # load dataset
    dataset = datasets.load_dataset('train', config.data_dir, config)
    test_dataset = datasets.load_dataset('test', config.data_dir, config)
    dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
                                             num_workers=8,
                                             shuffle=True,
                                             batch_size=1,
                                             collate_fn=dataset.collate_fn,
                                             persistent_workers=True,
                                             )
    test_dataloader = torch.utils.data.DataLoader(np.arange(len(test_dataset)),
                                                  num_workers=4,
                                                  shuffle=False,
                                                  batch_size=1,
                                                  persistent_workers=True,
                                                  collate_fn=test_dataset.collate_fn,
                                                  )
    if config.rawnerf_mode:
        postprocess_fn = test_dataset.metadata['postprocess_fn']
    else:
        postprocess_fn = lambda z, _=None: z

    # use accelerate to prepare.
    model, dataloader, optimizer = accelerator.prepare(model, dataloader, optimizer)

    if config.resume_from_checkpoint:
        init_step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
    else:
        init_step = 0

    module = accelerator.unwrap_model(model)
    dataiter = iter(dataloader)
    test_dataiter = iter(test_dataloader)

    num_params = train_utils.tree_len(list(model.parameters()))
    logger.info(f'Number of parameters being optimized: {num_params}')

    if (dataset.size > module.num_glo_embeddings and module.num_glo_features > 0):
        raise ValueError(f'Number of glo embeddings {module.num_glo_embeddings} '
                         f'must be at least equal to number of train images '
                         f'{dataset.size}')

    # metric handler
    metric_harness = image.MetricHarness()

    # tensorboard
    if accelerator.is_main_process:
        summary_writer = tensorboardX.SummaryWriter(config.exp_path)
        # function to convert image for tensorboard
        tb_process_fn = lambda x: x.transpose(2, 0, 1) if len(x.shape) == 3 else x[None]

        if config.rawnerf_mode:
            for name, data in zip(['train', 'test'], [dataset, test_dataset]):
                # Log shutter speed metadata in TensorBoard for debug purposes.
                for key in ['exposure_idx', 'exposure_values', 'unique_shutters']:
                    summary_writer.add_text(f'{name}_{key}', str(data.metadata[key]), 0)
    logger.info("Begin training...")
    step = init_step + 1
    total_time = 0
    total_steps = 0
    reset_stats = True
    if config.early_exit_steps is not None:
        num_steps = config.early_exit_steps
    else:
        num_steps = config.max_steps
    init_step = 0
    with logging_redirect_tqdm():
        tbar = tqdm(range(init_step + 1, num_steps + 1),
                    desc='Training', initial=init_step, total=num_steps,
                    disable=not accelerator.is_main_process)
        for step in tbar:
            try:
                batch = next(dataiter)
            except StopIteration:
                dataiter = iter(dataloader)
                batch = next(dataiter)
            batch = accelerate.utils.send_to_device(batch, accelerator.device)
            if reset_stats and accelerator.is_main_process:
                stats_buffer = []
                train_start_time = time.time()
                reset_stats = False

            # use lr_fn to control learning rate
            learning_rate = lr_fn(step)
            for param_group in optimizer.param_groups:
                param_group['lr'] = learning_rate

            # fraction of training period
            train_frac = np.clip((step - 1) / (config.max_steps - 1), 0, 1)

            # Indicates whether we need to compute output normal or depth maps in 2D.
            compute_extras = (config.compute_disp_metrics or config.compute_normal_metrics)
            optimizer.zero_grad()
            with accelerator.autocast():
                renderings, ray_history = model(
                    True,
                    batch,
                    train_frac=train_frac,
                    compute_extras=compute_extras,
                    zero_glo=False)

            losses = {}

            # supervised by data
            data_loss, stats = train_utils.compute_data_loss(batch, renderings, config)
            losses['data'] = data_loss

            # interlevel loss in MipNeRF360
            if config.interlevel_loss_mult > 0 and not module.single_mlp:
                losses['interlevel'] = train_utils.interlevel_loss(ray_history, config)

            # interlevel loss in ZipNeRF360
            if config.anti_interlevel_loss_mult > 0 and not module.single_mlp:
                losses['anti_interlevel'] = train_utils.anti_interlevel_loss(ray_history, config)

            # distortion loss
            if config.distortion_loss_mult > 0:
                losses['distortion'] = train_utils.distortion_loss(ray_history, config)

            # opacity loss
            if config.opacity_loss_mult > 0:
                losses['opacity'] = train_utils.opacity_loss(renderings, config)

            # orientation loss in RefNeRF
            if (config.orientation_coarse_loss_mult > 0 or
                    config.orientation_loss_mult > 0):
                losses['orientation'] = train_utils.orientation_loss(batch, module, ray_history,
                                                                     config)
            # hash grid l2 weight decay
            if config.hash_decay_mults > 0:
                losses['hash_decay'] = train_utils.hash_decay_loss(ray_history, config)

            # normal supervision loss in RefNeRF
            if (config.predicted_normal_coarse_loss_mult > 0 or
                    config.predicted_normal_loss_mult > 0):
                losses['predicted_normals'] = train_utils.predicted_normal_loss(
                    module, ray_history, config)
            loss = sum(losses.values())
            stats['loss'] = loss.item()
            stats['losses'] = tree_map(lambda x: x.item(), losses)

            # accelerator automatically handle the scale
            accelerator.backward(loss)
            # clip gradient by max/norm/nan
            train_utils.clip_gradients(model, accelerator, config)
            optimizer.step()

            stats['psnrs'] = image.mse_to_psnr(stats['mses'])
            stats['psnr'] = stats['psnrs'][-1]

            # Log training summaries. This is put behind a host_id check because in
            # multi-host evaluation, all hosts need to run inference even though we
            # only use host 0 to record results.
            if accelerator.is_main_process:
                stats_buffer.append(stats)
                if step == init_step + 1 or step % config.print_every == 0:
                    elapsed_time = time.time() - train_start_time
                    steps_per_sec = config.print_every / elapsed_time
                    rays_per_sec = config.batch_size * steps_per_sec

                    # A robust approximation of total training time, in case of pre-emption.
                    total_time += int(round(TIME_PRECISION * elapsed_time))
                    total_steps += config.print_every
                    approx_total_time = int(round(step * total_time / total_steps))

                    # Transpose and stack stats_buffer along axis 0.
                    fs = [utils.flatten_dict(s, sep='/') for s in stats_buffer]
                    stats_stacked = {k: np.stack([f[k] for f in fs]) for k in fs[0].keys()}

                    # Split every statistic that isn't a vector into a set of statistics.
                    stats_split = {}
                    for k, v in stats_stacked.items():
                        if v.ndim not in [1, 2] and v.shape[0] != len(stats_buffer):
                            raise ValueError('statistics must be of size [n], or [n, k].')
                        if v.ndim == 1:
                            stats_split[k] = v
                        elif v.ndim == 2:
                            for i, vi in enumerate(tuple(v.T)):
                                stats_split[f'{k}/{i}'] = vi

                    # Summarize the entire histogram of each statistic.
                    for k, v in stats_split.items():
                        summary_writer.add_histogram('train_' + k, v, step)

                    # Take the mean and max of each statistic since the last summary.
                    avg_stats = {k: np.mean(v) for k, v in stats_split.items()}
                    max_stats = {k: np.max(v) for k, v in stats_split.items()}

                    summ_fn = lambda s, v: summary_writer.add_scalar(s, v, step)  # pylint:disable=cell-var-from-loop

                    # Summarize the mean and max of each statistic.
                    for k, v in avg_stats.items():
                        summ_fn(f'train_avg_{k}', v)
                    for k, v in max_stats.items():
                        summ_fn(f'train_max_{k}', v)

                    summ_fn('train_num_params', num_params)
                    summ_fn('train_learning_rate', learning_rate)
                    summ_fn('train_steps_per_sec', steps_per_sec)
                    summ_fn('train_rays_per_sec', rays_per_sec)

                    summary_writer.add_scalar('train_avg_psnr_timed', avg_stats['psnr'],
                                              total_time // TIME_PRECISION)
                    summary_writer.add_scalar('train_avg_psnr_timed_approx', avg_stats['psnr'],
                                              approx_total_time // TIME_PRECISION)

                    if dataset.metadata is not None and module.learned_exposure_scaling:
                        scalings = module.exposure_scaling_offsets.weight
                        num_shutter_speeds = dataset.metadata['unique_shutters'].shape[0]
                        for i_s in range(num_shutter_speeds):
                            for j_s, value in enumerate(scalings[i_s]):
                                summary_name = f'exposure/scaling_{i_s}_{j_s}'
                                summary_writer.add_scalar(summary_name, value, step)

                    precision = int(np.ceil(np.log10(config.max_steps))) + 1
                    avg_loss = avg_stats['loss']
                    avg_psnr = avg_stats['psnr']
                    str_losses = {  # Grab each "losses_{x}" field and print it as "x[:4]".
                        k[7:11]: (f'{v:0.5f}' if 1e-4 <= v < 10 else f'{v:0.1e}')
                        for k, v in avg_stats.items()
                        if k.startswith('losses/')
                    }
                    logger.info(f'{step}' + f'/{config.max_steps:d}:' +
                                f'loss={avg_loss:0.5f},' + f'psnr={avg_psnr:.3f},' +
                                f'lr={learning_rate:0.2e} | ' +
                                ','.join([f'{k}={s}' for k, s in str_losses.items()]) +
                                f',{rays_per_sec:0.0f} r/s')

                    # Reset everything we are tracking between summarizations.
                    reset_stats = True

                if step > 0 and step % config.checkpoint_every == 0 and accelerator.is_main_process:
                    checkpoints.save_checkpoint(config.checkpoint_dir,
                                                accelerator, step,
                                                config.checkpoints_total_limit)

            # Test-set evaluation.
            if config.train_render_every > 0 and step % config.train_render_every == 0:
                # We reuse the same random number generator from the optimization step
                # here on purpose so that the visualization matches what happened in
                # training.
                eval_start_time = time.time()
                try:
                    test_batch = next(test_dataiter)
                except StopIteration:
                    test_dataiter = iter(test_dataloader)
                    test_batch = next(test_dataiter)
                test_batch = accelerate.utils.send_to_device(test_batch, accelerator.device)

                # render a single image with all distributed processes
                rendering = models.render_image(model, accelerator,
                                                test_batch, False,
                                                train_frac, config)

                # move to numpy
                rendering = tree_map(lambda x: x.detach().cpu().numpy(), rendering)
                test_batch = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, test_batch)
                # Log eval summaries on host 0.
                if accelerator.is_main_process:
                    eval_time = time.time() - eval_start_time
                    num_rays = np.prod(test_batch['directions'].shape[:-1])
                    rays_per_sec = num_rays / eval_time
                    summary_writer.add_scalar('test_rays_per_sec', rays_per_sec, step)

                    metric_start_time = time.time()
                    metric = metric_harness(
                        postprocess_fn(rendering['rgb']), postprocess_fn(test_batch['rgb']))
                    logger.info(f'Eval {step}: {eval_time:0.3f}s, {rays_per_sec:0.0f} rays/sec')
                    logger.info(f'Metrics computed in {(time.time() - metric_start_time):0.3f}s')
                    for name, val in metric.items():
                        if not np.isnan(val):
                            logger.info(f'{name} = {val:.4f}')
                            summary_writer.add_scalar('train_metrics/' + name, val, step)

                    if config.vis_decimate > 1:
                        d = config.vis_decimate
                        decimate_fn = lambda x, d=d: None if x is None else x[::d, ::d]
                    else:
                        decimate_fn = lambda x: x
                    rendering = tree_map(decimate_fn, rendering)
                    test_batch = tree_map(decimate_fn, test_batch)
                    vis_start_time = time.time()
                    vis_suite = vis.visualize_suite(rendering, test_batch)
                    with tqdm.external_write_mode():
                        logger.info(f'Visualized in {(time.time() - vis_start_time):0.3f}s')
                    if config.rawnerf_mode:
                        # Unprocess raw output.
                        vis_suite['color_raw'] = rendering['rgb']
                        # Autoexposed colors.
                        vis_suite['color_auto'] = postprocess_fn(rendering['rgb'], None)
                        summary_writer.add_image('test_true_auto',
                                                 tb_process_fn(postprocess_fn(test_batch['rgb'], None)), step)
                        # Exposure sweep colors.
                        exposures = test_dataset.metadata['exposure_levels']
                        for p, x in list(exposures.items()):
                            vis_suite[f'color/{p}'] = postprocess_fn(rendering['rgb'], x)
                            summary_writer.add_image(f'test_true_color/{p}',
                                                     tb_process_fn(postprocess_fn(test_batch['rgb'], x)), step)
                    summary_writer.add_image('test_true_color', tb_process_fn(test_batch['rgb']), step)
                    if config.compute_normal_metrics:
                        summary_writer.add_image('test_true_normals',
                                                 tb_process_fn(test_batch['normals']) / 2. + 0.5, step)
                    for k, v in vis_suite.items():
                        summary_writer.add_image('test_output_' + k, tb_process_fn(v), step)

    if accelerator.is_main_process and config.max_steps > init_step:
        logger.info('Saving last checkpoint at step {} to {}'.format(step, config.checkpoint_dir))
        checkpoints.save_checkpoint(config.checkpoint_dir,
                                    accelerator, step,
                                    config.checkpoints_total_limit)
    logger.info('Finish training.')


if __name__ == '__main__':
    with gin.config_scope('train'):
        app.run(main)