File size: 15,553 Bytes
c165cd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import glob
import logging
import os
import sys
import time
import cv2
import numpy as np
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import utils
from internal import coord
from internal import checkpoints
from internal import configs
import torch
import accelerate
from tqdm import tqdm
from torch.utils._pytree import tree_map
import torch.nn.functional as F
from skimage import measure
import trimesh
import pymeshlab as pml
from torch import Tensor
configs.define_common_flags()
class TSDF:
def __init__(self, config: configs.Config, accelerator: accelerate.Accelerator):
self.config = config
self.device = accelerator.device
self.accelerator = accelerator
self.origin = torch.tensor([-config.tsdf_radius] * 3, dtype=torch.float32, device=self.device)
self.voxel_size = 2 * config.tsdf_radius / (config.tsdf_resolution - 1)
self.resolution = config.tsdf_resolution
# create the voxel coordinates
dim = torch.arange(self.resolution)
grid = torch.stack(torch.meshgrid(dim, dim, dim, indexing="ij"), dim=0).reshape(3, -1)
period = int(grid.shape[1] / accelerator.num_processes + 0.5)
grid = grid[:, period * accelerator.process_index: period * (accelerator.process_index + 1)]
self.voxel_coords = self.origin.view(3, 1) + grid.to(self.device) * self.voxel_size
N = self.voxel_coords.shape[1]
# make voxel_coords homogeneous
voxel_world_coords = coord.inv_contract(self.voxel_coords.permute(1, 0)).permute(1, 0).view(3, -1)
# voxel_world_coords = self.voxel_coords.view(3, -1)
voxel_world_coords = torch.cat(
[voxel_world_coords, torch.ones(1, voxel_world_coords.shape[1], device=self.device)], dim=0
)
voxel_world_coords = voxel_world_coords.unsqueeze(0) # [1, 4, N]
self.voxel_world_coords = voxel_world_coords.expand(-1, *voxel_world_coords.shape[1:]) # [1, 4, N]
# initialize the values and weights
self.values = torch.ones(N, dtype=torch.float32,
device=self.device)
self.weights = torch.zeros(N, dtype=torch.float32,
device=self.device)
self.colors = torch.zeros(N, 3, dtype=torch.float32,
device=self.device)
@property
def truncation(self):
"""Returns the truncation distance."""
# TODO: clean this up
truncation = self.voxel_size * self.config.truncation_margin
return truncation
def export_mesh(self, path):
"""Extracts a mesh using marching cubes."""
# run marching cubes on CPU
tsdf_values = self.values.clamp(-1, 1)
mask = self.voxel_world_coords[:, :3].permute(0, 2, 1).norm(p=2, dim=-1) > self.config.tsdf_max_radius
tsdf_values[mask.reshape(self.values.shape)] = 1.
tsdf_values_np = self.accelerator.gather(tsdf_values).cpu().reshape((self.resolution, self.resolution, self.resolution)).numpy()
color_values_np = self.accelerator.gather(self.colors).cpu().reshape((self.resolution, self.resolution, self.resolution, 3)).numpy()
# # for OOM(resolution > 512)
# tsdf_values_np = tsdf_values.cpu().numpy()
# color_values_np = self.colors.cpu().numpy()
# path_dir = os.path.dirname(path)
# np.save(os.path.join(path_dir, 'tsdf_values_tmp_{}.npy'.format(self.accelerator.process_index)), tsdf_values_np)
# np.save(os.path.join(path_dir, 'color_values_tmp_{}.npy'.format(self.accelerator.process_index)), color_values_np)
# self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
# print('Start marching cubes')
# tsdf_values_np = np.concatenate([np.load(os.path.join(path_dir, 'tsdf_values_tmp_{}.npy'.format(i)), allow_pickle=True) for i in
# range(self.accelerator.num_processes)]).reshape((self.resolution, self.resolution, self.resolution))
# color_values_np = np.concatenate([np.load(os.path.join(path_dir, 'color_values_tmp_{}.npy'.format(i)), allow_pickle=True) for i in
# range(self.accelerator.num_processes)]).reshape((self.resolution, self.resolution, self.resolution, 3))
# print('After concatenate')
# os.system('rm {}'.format(os.path.join(path_dir, 'tsdf_values_tmp_*.npy')))
# os.system('rm {}'.format(os.path.join(path_dir, 'color_values_tmp_*.npy')))
vertices, faces, normals, _ = measure.marching_cubes(
tsdf_values_np,
level=0,
allow_degenerate=False,
)
vertices_indices = np.round(vertices).astype(int)
colors = color_values_np[vertices_indices[:, 0], vertices_indices[:, 1], vertices_indices[:, 2]]
# move vertices back to world space
vertices = self.origin.cpu().numpy() + vertices * self.voxel_size
vertices = coord.inv_contract_np(vertices)
trimesh.Trimesh(vertices=vertices,
faces=faces,
normals=normals,
vertex_colors=colors,
).export(path)
@torch.no_grad()
def integrate_tsdf(
self,
c2w,
K,
depth_images,
color_images=None,
):
"""Integrates a batch of depth images into the TSDF.
Args:
c2w: The camera extrinsics.
K: The camera intrinsics.
depth_images: The depth images to integrate.
color_images: The color images to integrate.
"""
batch_size = c2w.shape[0]
shape = self.voxel_coords.shape[1:]
# Project voxel_coords into image space...
image_size = torch.tensor(
[depth_images.shape[-1], depth_images.shape[-2]], device=self.device
) # [width, height]
# make voxel_coords homogeneous
voxel_world_coords = self.voxel_world_coords.expand(batch_size,
*self.voxel_world_coords.shape[1:]) # [batch, 4, N]
voxel_cam_coords = torch.bmm(torch.inverse(c2w), voxel_world_coords) # [batch, 4, N]
# flip the z axis
voxel_cam_coords[:, 2, :] = -voxel_cam_coords[:, 2, :]
# flip the y axis
voxel_cam_coords[:, 1, :] = -voxel_cam_coords[:, 1, :]
# # we need the distance of the point to the camera, not the z coordinate
# # TODO: why is this not the z coordinate?
# voxel_depth = torch.sqrt(torch.sum(voxel_cam_coords[:, :3, :] ** 2, dim=-2, keepdim=True)) # [batch, 1, N]
voxel_cam_coords_z = voxel_cam_coords[:, 2:3, :]
voxel_depth = voxel_cam_coords_z
voxel_cam_points = torch.bmm(K[None].expand(batch_size, -1, -1),
voxel_cam_coords[:, 0:3, :] / voxel_cam_coords_z) # [batch, 3, N]
voxel_pixel_coords = voxel_cam_points[:, :2, :] # [batch, 2, N]
# Sample the depth images with grid sample...
grid = voxel_pixel_coords.permute(0, 2, 1) # [batch, N, 2]
# normalize grid to [-1, 1]
grid = 2.0 * grid / image_size.view(1, 1, 2) - 1.0 # [batch, N, 2]
grid = grid[:, None] # [batch, 1, N, 2]
# depth
sampled_depth = F.grid_sample(
input=depth_images, grid=grid, mode="nearest", padding_mode="zeros", align_corners=False
) # [batch, N, 1]
sampled_depth = sampled_depth.squeeze(2) # [batch, 1, N]
# colors
sampled_colors = None
if color_images is not None:
sampled_colors = F.grid_sample(
input=color_images, grid=grid, mode="nearest", padding_mode="zeros", align_corners=False
) # [batch, N, 3]
sampled_colors = sampled_colors.squeeze(2) # [batch, 3, N]
dist = sampled_depth - voxel_depth # [batch, 1, N]
# x = self.voxel_world_coords[:, :3].permute(0, 2, 1)
# eps = torch.finfo(x.dtype).eps
# x_mag_sq = torch.sum(x ** 2, dim=-1).clamp_min(eps)
# truncation_weight = torch.where(x_mag_sq <= 1, torch.ones_like(x_mag_sq),
# ((2 * torch.sqrt(x_mag_sq) - 1) / x_mag_sq))
# truncation = truncation_weight.reciprocal() * self.truncation
truncation = self.truncation
tsdf_values = torch.clamp(dist / truncation, min=-1.0, max=1.0) # [batch, 1, N]
valid_points = (voxel_depth > 0) & (sampled_depth > 0) & (dist > -self.truncation) # [batch, 1, N]
# Sequentially update the TSDF...
for i in range(batch_size):
valid_points_i = valid_points[i]
valid_points_i_shape = valid_points_i.view(*shape) # [xdim, ydim, zdim]
# the old values
old_tsdf_values_i = self.values[valid_points_i_shape]
old_weights_i = self.weights[valid_points_i_shape]
# the new values
# TODO: let the new weight be configurable
new_tsdf_values_i = tsdf_values[i][valid_points_i]
new_weights_i = 1.0
total_weights = old_weights_i + new_weights_i
self.values[valid_points_i_shape] = (old_tsdf_values_i * old_weights_i +
new_tsdf_values_i * new_weights_i) / total_weights
# self.weights[valid_points_i_shape] = torch.clamp(total_weights, max=1.0)
self.weights[valid_points_i_shape] = total_weights
if sampled_colors is not None:
old_colors_i = self.colors[valid_points_i_shape] # [M, 3]
new_colors_i = sampled_colors[i][:, valid_points_i.squeeze(0)].permute(1, 0) # [M, 3]
self.colors[valid_points_i_shape] = (old_colors_i * old_weights_i[:, None] +
new_colors_i * new_weights_i) / total_weights[:, None]
def main(unused_argv):
config = configs.load_config()
config.compute_visibility = True
config.exp_path = os.path.join("exp", config.exp_name)
config.mesh_path = os.path.join("exp", config.exp_name, "mesh")
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
os.makedirs(config.mesh_path, exist_ok=True)
# accelerator for DDP
accelerator = accelerate.Accelerator()
device = accelerator.device
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_extract.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
# setup model and optimizer
model = models.Model(config=config)
model = accelerator.prepare(model)
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
model.eval()
module = accelerator.unwrap_model(model)
dataset = datasets.load_dataset('train', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
shuffle=False,
batch_size=1,
collate_fn=dataset.collate_fn,
)
dataiter = iter(dataloader)
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
out_name = f'train_preds_step_{step}'
out_dir = os.path.join(config.mesh_path, out_name)
utils.makedirs(out_dir)
logger.info("Render trainset in {}".format(out_dir))
path_fn = lambda x: os.path.join(out_dir, x)
# Ensure sufficient zero-padding of image indices in output filenames.
zpad = max(3, len(str(dataset.size - 1)))
idx_to_str = lambda idx: str(idx).zfill(zpad)
for idx in range(dataset.size):
# If current image and next image both already exist, skip ahead.
idx_str = idx_to_str(idx)
curr_file = path_fn(f'color_{idx_str}.png')
if utils.file_exists(curr_file):
logger.info(f'Image {idx + 1}/{dataset.size} already exists, skipping')
continue
batch = next(dataiter)
batch = tree_map(lambda x: x.to(accelerator.device) if x is not None else None, batch)
logger.info(f'Evaluating image {idx + 1}/{dataset.size}')
eval_start_time = time.time()
rendering = models.render_image(model, accelerator,
batch, False, 1, config)
logger.info(f'Rendered in {(time.time() - eval_start_time):0.3f}s')
if accelerator.is_main_process: # Only record via host 0.
rendering['rgb'] = postprocess_fn(rendering['rgb'])
rendering = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, rendering)
utils.save_img_u8(rendering['rgb'], path_fn(f'color_{idx_str}.png'))
utils.save_img_f32(rendering['distance_mean'],
path_fn(f'distance_mean_{idx_str}.tiff'))
utils.save_img_f32(rendering['distance_median'],
path_fn(f'distance_median_{idx_str}.tiff'))
# if accelerator.is_main_process:
tsdf = TSDF(config, accelerator)
c2w = torch.from_numpy(dataset.camtoworlds[:, :3, :4]).float().to(device)
# make c2w homogeneous
c2w = torch.cat([c2w, torch.zeros(c2w.shape[0], 1, 4, device=device)], dim=1)
c2w[:, 3, 3] = 1
K = torch.from_numpy(dataset.pixtocams).float().to(device).inverse()
logger.info('Reading images')
rgb_files = sorted(glob.glob(path_fn('color_*.png')))
depth_files = sorted(glob.glob(path_fn('distance_median_*.tiff')))
assert len(rgb_files) == len(depth_files)
color_images = []
depth_images = []
for rgb_file, depth_file in zip(tqdm(rgb_files, disable=not accelerator.is_main_process), depth_files):
color_images.append(utils.load_img(rgb_file) / 255)
depth_images.append(utils.load_img(depth_file)[..., None])
color_images = torch.tensor(np.array(color_images), device=device).permute(0, 3, 1, 2) # shape (N, 3, H, W)
depth_images = torch.tensor(np.array(depth_images), device=device).permute(0, 3, 1, 2) # shape (N, 1, H, W)
batch_size = 1
logger.info("Integrating the TSDF")
for i in tqdm(range(0, len(c2w), batch_size), disable=not accelerator.is_main_process):
tsdf.integrate_tsdf(
c2w[i: i + batch_size],
K,
depth_images[i: i + batch_size],
color_images=color_images[i: i + batch_size],
)
logger.info("Saving TSDF Mesh")
tsdf.export_mesh(os.path.join(config.mesh_path, "tsdf_mesh.ply"))
accelerator.wait_for_everyone()
logger.info('Finish extracting mesh using TSDF.')
if __name__ == '__main__':
with gin.config_scope('bake'):
app.run(main)
|