zipnerf / eval.py
Cr4yfish's picture
copy files from SuLvXiangXin
c165cd8
raw
history blame
13.7 kB
import logging
import os
import sys
import time
import accelerate
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import image
from internal import models
from internal import raw_utils
from internal import ref_utils
from internal import train_utils
from internal import checkpoints
from internal import utils
from internal import vis
import numpy as np
import torch
import tensorboardX
from torch.utils._pytree import tree_map
configs.define_common_flags()
def summarize_results(folder, scene_names, num_buckets):
metric_names = ['psnrs', 'ssims', 'lpips']
num_iters = 1000000
precisions = [3, 4, 4, 4]
results = []
for scene_name in scene_names:
test_preds_folder = os.path.join(folder, scene_name, 'test_preds')
values = []
for metric_name in metric_names:
filename = os.path.join(folder, scene_name, 'test_preds', f'{metric_name}_{num_iters}.txt')
with utils.open_file(filename) as f:
v = np.array([float(s) for s in f.readline().split(' ')])
values.append(np.mean(np.reshape(v, [-1, num_buckets]), 0))
results.append(np.concatenate(values))
avg_results = np.mean(np.array(results), 0)
psnr, ssim, lpips = np.mean(np.reshape(avg_results, [-1, num_buckets]), 1)
mse = np.exp(-0.1 * np.log(10.) * psnr)
dssim = np.sqrt(1 - ssim)
avg_avg = np.exp(np.mean(np.log(np.array([mse, dssim, lpips]))))
s = []
for i, v in enumerate(np.reshape(avg_results, [-1, num_buckets])):
s.append(' '.join([f'{s:0.{precisions[i]}f}' for s in v]))
s.append(f'{avg_avg:0.{precisions[-1]}f}')
return ' | '.join(s)
def main(unused_argv):
config = configs.load_config()
config.exp_path = os.path.join('exp', config.exp_name)
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
config.render_dir = os.path.join(config.exp_path, 'render')
accelerator = accelerate.Accelerator()
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_eval.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
model = models.Model(config=config)
model.eval()
model.to(accelerator.device)
dataset = datasets.load_dataset('test', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
shuffle=False,
batch_size=1,
collate_fn=dataset.collate_fn,
)
tb_process_fn = lambda x: x.transpose(2, 0, 1) if len(x.shape) == 3 else x[None]
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
if config.eval_raw_affine_cc:
cc_fun = raw_utils.match_images_affine
else:
cc_fun = image.color_correct
model = accelerator.prepare(model)
metric_harness = image.MetricHarness()
last_step = 0
out_dir = os.path.join(config.exp_path,
'path_renders' if config.render_path else 'test_preds')
path_fn = lambda x: os.path.join(out_dir, x)
if not config.eval_only_once:
summary_writer = tensorboardX.SummaryWriter(
os.path.join(config.exp_path, 'eval'))
while True:
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
if step <= last_step:
logger.info(f'Checkpoint step {step} <= last step {last_step}, sleeping.')
time.sleep(10)
continue
logger.info(f'Evaluating checkpoint at step {step}.')
if config.eval_save_output and (not utils.isdir(out_dir)):
utils.makedirs(out_dir)
num_eval = min(dataset.size, config.eval_dataset_limit)
perm = np.random.permutation(num_eval)
showcase_indices = np.sort(perm[:config.num_showcase_images])
metrics = []
metrics_cc = []
showcases = []
render_times = []
for idx, batch in enumerate(dataloader):
batch = accelerate.utils.send_to_device(batch, accelerator.device)
eval_start_time = time.time()
if idx >= num_eval:
logger.info(f'Skipping image {idx + 1}/{dataset.size}')
continue
logger.info(f'Evaluating image {idx + 1}/{dataset.size}')
rendering = models.render_image(model, accelerator,
batch, False, 1, config)
if not accelerator.is_main_process: # Only record via host 0.
continue
render_times.append((time.time() - eval_start_time))
logger.info(f'Rendered in {render_times[-1]:0.3f}s')
cc_start_time = time.time()
rendering['rgb_cc'] = cc_fun(rendering['rgb'], batch['rgb'])
rendering = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, rendering)
batch = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, batch)
gt_rgb = batch['rgb']
logger.info(f'Color corrected in {(time.time() - cc_start_time):0.3f}s')
if not config.eval_only_once and idx in showcase_indices:
showcase_idx = idx if config.deterministic_showcase else len(showcases)
showcases.append((showcase_idx, rendering, batch))
if not config.render_path:
rgb = postprocess_fn(rendering['rgb'])
rgb_cc = postprocess_fn(rendering['rgb_cc'])
rgb_gt = postprocess_fn(gt_rgb)
if config.eval_quantize_metrics:
# Ensures that the images written to disk reproduce the metrics.
rgb = np.round(rgb * 255) / 255
rgb_cc = np.round(rgb_cc * 255) / 255
if config.eval_crop_borders > 0:
crop_fn = lambda x, c=config.eval_crop_borders: x[c:-c, c:-c]
rgb = crop_fn(rgb)
rgb_cc = crop_fn(rgb_cc)
rgb_gt = crop_fn(rgb_gt)
metric = metric_harness(rgb, rgb_gt)
metric_cc = metric_harness(rgb_cc, rgb_gt)
if config.compute_disp_metrics:
for tag in ['mean', 'median']:
key = f'distance_{tag}'
if key in rendering:
disparity = 1 / (1 + rendering[key])
metric[f'disparity_{tag}_mse'] = float(
((disparity - batch['disps']) ** 2).mean())
if config.compute_normal_metrics:
weights = rendering['acc'] * batch['alphas']
normalized_normals_gt = ref_utils.l2_normalize_np(batch['normals'])
for key, val in rendering.items():
if key.startswith('normals') and val is not None:
normalized_normals = ref_utils.l2_normalize_np(val)
metric[key + '_mae'] = ref_utils.compute_weighted_mae_np(
weights, normalized_normals, normalized_normals_gt)
for m, v in metric.items():
logger.info(f'{m:30s} = {v:.4f}')
metrics.append(metric)
metrics_cc.append(metric_cc)
if config.eval_save_output and (config.eval_render_interval > 0):
if (idx % config.eval_render_interval) == 0:
utils.save_img_u8(postprocess_fn(rendering['rgb']),
path_fn(f'color_{idx:03d}.png'))
utils.save_img_u8(postprocess_fn(rendering['rgb_cc']),
path_fn(f'color_cc_{idx:03d}.png'))
for key in ['distance_mean', 'distance_median']:
if key in rendering:
utils.save_img_f32(rendering[key],
path_fn(f'{key}_{idx:03d}.tiff'))
for key in ['normals']:
if key in rendering:
utils.save_img_u8(rendering[key] / 2. + 0.5,
path_fn(f'{key}_{idx:03d}.png'))
utils.save_img_f32(rendering['acc'], path_fn(f'acc_{idx:03d}.tiff'))
if (not config.eval_only_once) and accelerator.is_main_process:
summary_writer.add_scalar('eval_median_render_time', np.median(render_times),
step)
for name in metrics[0]:
scores = [m[name] for m in metrics]
summary_writer.add_scalar('eval_metrics/' + name, np.mean(scores), step)
summary_writer.add_histogram('eval_metrics/' + 'perimage_' + name, scores,
step)
for name in metrics_cc[0]:
scores = [m[name] for m in metrics_cc]
summary_writer.add_scalar('eval_metrics_cc/' + name, np.mean(scores), step)
summary_writer.add_histogram('eval_metrics_cc/' + 'perimage_' + name,
scores, step)
for i, r, b in showcases:
if config.vis_decimate > 1:
d = config.vis_decimate
decimate_fn = lambda x, d=d: None if x is None else x[::d, ::d]
else:
decimate_fn = lambda x: x
r = tree_map(decimate_fn, r)
b = tree_map(decimate_fn, b)
visualizations = vis.visualize_suite(r, b)
for k, v in visualizations.items():
if k == 'color':
v = postprocess_fn(v)
summary_writer.add_image(f'output_{k}_{i}', tb_process_fn(v), step)
if not config.render_path:
target = postprocess_fn(b['rgb'])
summary_writer.add_image(f'true_color_{i}', tb_process_fn(target), step)
pred = postprocess_fn(visualizations['color'])
residual = np.clip(pred - target + 0.5, 0, 1)
summary_writer.add_image(f'true_residual_{i}', tb_process_fn(residual), step)
if config.compute_normal_metrics:
summary_writer.add_image(f'true_normals_{i}', tb_process_fn(b['normals']) / 2. + 0.5,
step)
if (config.eval_save_output and (not config.render_path) and
accelerator.is_main_process):
with utils.open_file(path_fn(f'render_times_{step}.txt'), 'w') as f:
f.write(' '.join([str(r) for r in render_times]))
logger.info(f'metrics:')
results = {}
num_buckets = config.multiscale_levels if config.multiscale else 1
for name in metrics[0]:
with utils.open_file(path_fn(f'metric_{name}_{step}.txt'), 'w') as f:
ms = [m[name] for m in metrics]
f.write(' '.join([str(m) for m in ms]))
results[name] = ' | '.join(
list(map(str, np.mean(np.array(ms).reshape([-1, num_buckets]), 0).tolist())))
with utils.open_file(path_fn(f'metric_avg_{step}.txt'), 'w') as f:
for name in metrics[0]:
f.write(f'{name}: {results[name]}\n')
logger.info(f'{name}: {results[name]}')
logger.info(f'metrics_cc:')
results_cc = {}
for name in metrics_cc[0]:
with utils.open_file(path_fn(f'metric_cc_{name}_{step}.txt'), 'w') as f:
ms = [m[name] for m in metrics_cc]
f.write(' '.join([str(m) for m in ms]))
results_cc[name] = ' | '.join(
list(map(str, np.mean(np.array(ms).reshape([-1, num_buckets]), 0).tolist())))
with utils.open_file(path_fn(f'metric_cc_avg_{step}.txt'), 'w') as f:
for name in metrics[0]:
f.write(f'{name}: {results_cc[name]}\n')
logger.info(f'{name}: {results_cc[name]}')
if config.eval_save_ray_data:
for i, r, b in showcases:
rays = {k: v for k, v in r.items() if 'ray_' in k}
np.set_printoptions(threshold=sys.maxsize)
with utils.open_file(path_fn(f'ray_data_{step}_{i}.txt'), 'w') as f:
f.write(repr(rays))
if config.eval_only_once:
break
if config.early_exit_steps is not None:
num_steps = config.early_exit_steps
else:
num_steps = config.max_steps
if int(step) >= num_steps:
break
last_step = step
logger.info('Finish evaluation.')
if __name__ == '__main__':
with gin.config_scope('eval'):
app.run(main)