zipnerf / render.py
Cr4yfish's picture
copy files from SuLvXiangXin
c165cd8
import glob
import logging
import os
import sys
import time
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import models
from internal import train_utils
from internal import checkpoints
from internal import utils
from internal import vis
from matplotlib import cm
import mediapy as media
import torch
import numpy as np
import accelerate
import imageio
from torch.utils._pytree import tree_map
configs.define_common_flags()
def create_videos(config, base_dir, out_dir, out_name, num_frames):
"""Creates videos out of the images saved to disk."""
names = [n for n in config.exp_path.split('/') if n]
# Last two parts of checkpoint path are experiment name and scene name.
exp_name, scene_name = names[-2:]
video_prefix = f'{scene_name}_{exp_name}_{out_name}'
zpad = max(3, len(str(num_frames - 1)))
idx_to_str = lambda idx: str(idx).zfill(zpad)
utils.makedirs(base_dir)
# Load one example frame to get image shape and depth range.
depth_file = os.path.join(out_dir, f'distance_mean_{idx_to_str(0)}.tiff')
depth_frame = utils.load_img(depth_file)
shape = depth_frame.shape
p = config.render_dist_percentile
distance_limits = np.percentile(depth_frame.flatten(), [p, 100 - p])
# lo, hi = [config.render_dist_curve_fn(x) for x in distance_limits]
depth_curve_fn = lambda x: -np.log(x + np.finfo(np.float32).eps)
lo, hi = distance_limits
print(f'Video shape is {shape[:2]}')
for k in ['color', 'normals', 'acc', 'distance_mean', 'distance_median']:
video_file = os.path.join(base_dir, f'{video_prefix}_{k}.mp4')
file_ext = 'png' if k in ['color', 'normals'] else 'tiff'
file0 = os.path.join(out_dir, f'{k}_{idx_to_str(0)}.{file_ext}')
if not utils.file_exists(file0):
print(f'Images missing for tag {k}')
continue
print(f'Making video {video_file}...')
writer = imageio.get_writer(video_file, fps=config.render_video_fps)
for idx in range(num_frames):
img_file = os.path.join(out_dir, f'{k}_{idx_to_str(idx)}.{file_ext}')
if not utils.file_exists(img_file):
ValueError(f'Image file {img_file} does not exist.')
img = utils.load_img(img_file)
if k in ['color', 'normals']:
img = img / 255.
elif k.startswith('distance'):
# img = config.render_dist_curve_fn(img)
# img = np.clip((img - np.minimum(lo, hi)) / np.abs(hi - lo), 0, 1)
# img = cm.get_cmap('turbo')(img)[..., :3]
img = vis.visualize_cmap(img, np.ones_like(img), cm.get_cmap('turbo'), lo, hi, curve_fn=depth_curve_fn)
frame = (np.clip(np.nan_to_num(img), 0., 1.) * 255.).astype(np.uint8)
writer.append_data(frame)
writer.close()
def main(unused_argv):
config = configs.load_config()
config.exp_path = os.path.join('exp', config.exp_name)
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
config.render_dir = os.path.join(config.exp_path, 'render')
accelerator = accelerate.Accelerator()
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_render.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
accelerate.utils.set_seed(config.seed, device_specific=True)
model = models.Model(config=config)
model.eval()
dataset = datasets.load_dataset('test', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
shuffle=False,
batch_size=1,
collate_fn=dataset.collate_fn,
)
dataiter = iter(dataloader)
if config.rawnerf_mode:
postprocess_fn = dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z: z
model = accelerator.prepare(model)
step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
logger.info(f'Rendering checkpoint at step {step}.')
out_name = 'path_renders' if config.render_path else 'test_preds'
out_name = f'{out_name}_step_{step}2'
out_dir = os.path.join(config.render_dir, out_name)
utils.makedirs(out_dir)
path_fn = lambda x: os.path.join(out_dir, x)
# Ensure sufficient zero-padding of image indices in output filenames.
zpad = max(3, len(str(dataset.size - 1)))
idx_to_str = lambda idx: str(idx).zfill(zpad)
for idx in range(dataset.size):
# If current image and next image both already exist, skip ahead.
idx_str = idx_to_str(idx)
curr_file = path_fn(f'color_{idx_str}.png')
if utils.file_exists(curr_file):
logger.info(f'Image {idx + 1}/{dataset.size} already exists, skipping')
continue
batch = next(dataiter)
batch = tree_map(lambda x: x.to(accelerator.device) if x is not None else None, batch)
logger.info(f'Evaluating image {idx + 1}/{dataset.size}')
eval_start_time = time.time()
rendering = models.render_image(model, accelerator,
batch, False, 1, config)
logger.info(f'Rendered in {(time.time() - eval_start_time):0.3f}s')
if accelerator.is_main_process: # Only record via host 0.
rendering['rgb'] = postprocess_fn(rendering['rgb'])
rendering = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, rendering)
utils.save_img_u8(rendering['rgb'], path_fn(f'color_{idx_str}.png'))
if 'normals' in rendering:
utils.save_img_u8(rendering['normals'] / 2. + 0.5,
path_fn(f'normals_{idx_str}.png'))
utils.save_img_f32(rendering['distance_mean'],
path_fn(f'distance_mean_{idx_str}.tiff'))
utils.save_img_f32(rendering['distance_median'],
path_fn(f'distance_median_{idx_str}.tiff'))
utils.save_img_f32(rendering['acc'], path_fn(f'acc_{idx_str}.tiff'))
num_files = len(glob.glob(path_fn('acc_*.tiff')))
if accelerator.is_main_process and num_files == dataset.size:
logger.info(f'All files found, creating videos.')
create_videos(config, config.render_dir, out_dir, out_name, dataset.size)
accelerator.wait_for_everyone()
logger.info('Finish rendering.')
if __name__ == '__main__':
with gin.config_scope('eval'): # Use the same scope as eval.py
app.run(main)