|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- metric |
|
widget: |
|
- text: A combined 20 million people per year die of smoking and hunger, so authorities |
|
can't seem to feed people and they allow you to buy cigarettes but we are facing |
|
another lockdown for a virus that has a 99.5% survival rate!!! THINK PEOPLE. LOOK |
|
AT IT LOGICALLY WITH YOUR OWN EYES. |
|
- text: Scientists do not agree on the consequences of climate change, nor is there |
|
any consensus on that subject. The predictions on that from are just ascientific |
|
speculation. Bring on the warming." |
|
- text: If Tam is our "top doctor"....I am going back to leaches and voodoo...just |
|
as much science in that as the crap she spouts |
|
- text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions\ |
|
\ and just a good actor." |
|
- text: my dad had huge ones..so they may be real.. |
|
pipeline_tag: text-classification |
|
inference: false |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.65694899973345 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a ClassifierChain instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
<!-- - **Number of Classes:** Unknown --> |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.6569 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-13classes-multi_label") |
|
# Run inference |
|
preds = model("my dad had huge ones..so they may be real..") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:-----| |
|
| Word count | 1 | 25.8891 | 1681 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (3, 3) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (1.752e-05, 1.752e-05) |
|
- head_learning_rate: 1.752e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 30 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0004 | 1 | 0.3059 | - | |
|
| 0.0185 | 50 | 0.3597 | - | |
|
| 0.0370 | 100 | 0.272 | - | |
|
| 0.0555 | 150 | 0.2282 | - | |
|
| 0.0739 | 200 | 0.2413 | - | |
|
| 0.0924 | 250 | 0.2239 | - | |
|
| 0.1109 | 300 | 0.2447 | - | |
|
| 0.1294 | 350 | 0.1574 | - | |
|
| 0.1479 | 400 | 0.1873 | - | |
|
| 0.1664 | 450 | 0.1537 | - | |
|
| 0.1848 | 500 | 0.1661 | - | |
|
| 0.2033 | 550 | 0.1692 | - | |
|
| 0.2218 | 600 | 0.1105 | - | |
|
| 0.2403 | 650 | 0.1316 | - | |
|
| 0.2588 | 700 | 0.1018 | - | |
|
| 0.2773 | 750 | 0.1148 | - | |
|
| 0.2957 | 800 | 0.0588 | - | |
|
| 0.3142 | 850 | 0.2385 | - | |
|
| 0.3327 | 900 | 0.0302 | - | |
|
| 0.3512 | 950 | 0.0714 | - | |
|
| 0.3697 | 1000 | 0.1587 | - | |
|
| 0.3882 | 1050 | 0.1479 | - | |
|
| 0.4067 | 1100 | 0.0897 | - | |
|
| 0.4251 | 1150 | 0.064 | - | |
|
| 0.4436 | 1200 | 0.0774 | - | |
|
| 0.4621 | 1250 | 0.0318 | - | |
|
| 0.4806 | 1300 | 0.1231 | - | |
|
| 0.4991 | 1350 | 0.0983 | - | |
|
| 0.5176 | 1400 | 0.1537 | - | |
|
| 0.5360 | 1450 | 0.1382 | - | |
|
| 0.5545 | 1500 | 0.1244 | - | |
|
| 0.5730 | 1550 | 0.1169 | - | |
|
| 0.5915 | 1600 | 0.0185 | - | |
|
| 0.6100 | 1650 | 0.1368 | - | |
|
| 0.6285 | 1700 | 0.0678 | - | |
|
| 0.6470 | 1750 | 0.0827 | - | |
|
| 0.6654 | 1800 | 0.028 | - | |
|
| 0.6839 | 1850 | 0.0655 | - | |
|
| 0.7024 | 1900 | 0.1099 | - | |
|
| 0.7209 | 1950 | 0.0508 | - | |
|
| 0.7394 | 2000 | 0.086 | - | |
|
| 0.7579 | 2050 | 0.1087 | - | |
|
| 0.7763 | 2100 | 0.0764 | - | |
|
| 0.7948 | 2150 | 0.0646 | - | |
|
| 0.8133 | 2200 | 0.0793 | - | |
|
| 0.8318 | 2250 | 0.0678 | - | |
|
| 0.8503 | 2300 | 0.0538 | - | |
|
| 0.8688 | 2350 | 0.0495 | - | |
|
| 0.8872 | 2400 | 0.0651 | - | |
|
| 0.9057 | 2450 | 0.0966 | - | |
|
| 0.9242 | 2500 | 0.1726 | - | |
|
| 0.9427 | 2550 | 0.0491 | - | |
|
| 0.9612 | 2600 | 0.043 | - | |
|
| 0.9797 | 2650 | 0.0807 | - | |
|
| 0.9982 | 2700 | 0.0905 | - | |
|
| 1.0166 | 2750 | 0.0841 | - | |
|
| 1.0351 | 2800 | 0.0735 | - | |
|
| 1.0536 | 2850 | 0.0508 | - | |
|
| 1.0721 | 2900 | 0.082 | - | |
|
| 1.0906 | 2950 | 0.085 | - | |
|
| 1.1091 | 3000 | 0.0412 | - | |
|
| 1.1275 | 3050 | 0.0274 | - | |
|
| 1.1460 | 3100 | 0.1012 | - | |
|
| 1.1645 | 3150 | 0.0269 | - | |
|
| 1.1830 | 3200 | 0.0377 | - | |
|
| 1.2015 | 3250 | 0.0854 | - | |
|
| 1.2200 | 3300 | 0.0854 | - | |
|
| 1.2384 | 3350 | 0.0682 | - | |
|
| 1.2569 | 3400 | 0.038 | - | |
|
| 1.2754 | 3450 | 0.1073 | - | |
|
| 1.2939 | 3500 | 0.0841 | - | |
|
| 1.3124 | 3550 | 0.1024 | - | |
|
| 1.3309 | 3600 | 0.0636 | - | |
|
| 1.3494 | 3650 | 0.0821 | - | |
|
| 1.3678 | 3700 | 0.0742 | - | |
|
| 1.3863 | 3750 | 0.0504 | - | |
|
| 1.4048 | 3800 | 0.1198 | - | |
|
| 1.4233 | 3850 | 0.0233 | - | |
|
| 1.4418 | 3900 | 0.0659 | - | |
|
| 1.4603 | 3950 | 0.0252 | - | |
|
| 1.4787 | 4000 | 0.0772 | - | |
|
| 1.4972 | 4050 | 0.0466 | - | |
|
| 1.5157 | 4100 | 0.0771 | - | |
|
| 1.5342 | 4150 | 0.0489 | - | |
|
| 1.5527 | 4200 | 0.0273 | - | |
|
| 1.5712 | 4250 | 0.0335 | - | |
|
| 1.5896 | 4300 | 0.0733 | - | |
|
| 1.6081 | 4350 | 0.0323 | - | |
|
| 1.6266 | 4400 | 0.0358 | - | |
|
| 1.6451 | 4450 | 0.0252 | - | |
|
| 1.6636 | 4500 | 0.078 | - | |
|
| 1.6821 | 4550 | 0.0137 | - | |
|
| 1.7006 | 4600 | 0.0858 | - | |
|
| 1.7190 | 4650 | 0.0377 | - | |
|
| 1.7375 | 4700 | 0.0607 | - | |
|
| 1.7560 | 4750 | 0.0438 | - | |
|
| 1.7745 | 4800 | 0.0501 | - | |
|
| 1.7930 | 4850 | 0.0682 | - | |
|
| 1.8115 | 4900 | 0.0571 | - | |
|
| 1.8299 | 4950 | 0.0144 | - | |
|
| 1.8484 | 5000 | 0.0518 | - | |
|
| 1.8669 | 5050 | 0.0388 | - | |
|
| 1.8854 | 5100 | 0.0685 | - | |
|
| 1.9039 | 5150 | 0.0522 | - | |
|
| 1.9224 | 5200 | 0.0518 | - | |
|
| 1.9409 | 5250 | 0.0649 | - | |
|
| 1.9593 | 5300 | 0.083 | - | |
|
| 1.9778 | 5350 | 0.0652 | - | |
|
| 1.9963 | 5400 | 0.0907 | - | |
|
| 2.0148 | 5450 | 0.0767 | - | |
|
| 2.0333 | 5500 | 0.0825 | - | |
|
| 2.0518 | 5550 | 0.0818 | - | |
|
| 2.0702 | 5600 | 0.0364 | - | |
|
| 2.0887 | 5650 | 0.134 | - | |
|
| 2.1072 | 5700 | 0.0379 | - | |
|
| 2.1257 | 5750 | 0.1066 | - | |
|
| 2.1442 | 5800 | 0.1288 | - | |
|
| 2.1627 | 5850 | 0.0527 | - | |
|
| 2.1811 | 5900 | 0.0343 | - | |
|
| 2.1996 | 5950 | 0.0766 | - | |
|
| 2.2181 | 6000 | 0.0862 | - | |
|
| 2.2366 | 6050 | 0.0661 | - | |
|
| 2.2551 | 6100 | 0.069 | - | |
|
| 2.2736 | 6150 | 0.0429 | - | |
|
| 2.2921 | 6200 | 0.0546 | - | |
|
| 2.3105 | 6250 | 0.1237 | - | |
|
| 2.3290 | 6300 | 0.0337 | - | |
|
| 2.3475 | 6350 | 0.0616 | - | |
|
| 2.3660 | 6400 | 0.0833 | - | |
|
| 2.3845 | 6450 | 0.1074 | - | |
|
| 2.4030 | 6500 | 0.0424 | - | |
|
| 2.4214 | 6550 | 0.033 | - | |
|
| 2.4399 | 6600 | 0.0933 | - | |
|
| 2.4584 | 6650 | 0.0434 | - | |
|
| 2.4769 | 6700 | 0.0328 | - | |
|
| 2.4954 | 6750 | 0.0553 | - | |
|
| 2.5139 | 6800 | 0.0557 | - | |
|
| 2.5323 | 6850 | 0.0861 | - | |
|
| 2.5508 | 6900 | 0.0294 | - | |
|
| 2.5693 | 6950 | 0.0521 | - | |
|
| 2.5878 | 7000 | 0.1529 | - | |
|
| 2.6063 | 7050 | 0.055 | - | |
|
| 2.6248 | 7100 | 0.0522 | - | |
|
| 2.6433 | 7150 | 0.0715 | - | |
|
| 2.6617 | 7200 | 0.0524 | - | |
|
| 2.6802 | 7250 | 0.0469 | - | |
|
| 2.6987 | 7300 | 0.1064 | - | |
|
| 2.7172 | 7350 | 0.0485 | - | |
|
| 2.7357 | 7400 | 0.0526 | - | |
|
| 2.7542 | 7450 | 0.1063 | - | |
|
| 2.7726 | 7500 | 0.0549 | - | |
|
| 2.7911 | 7550 | 0.041 | - | |
|
| 2.8096 | 7600 | 0.0312 | - | |
|
| 2.8281 | 7650 | 0.0249 | - | |
|
| 2.8466 | 7700 | 0.0807 | - | |
|
| 2.8651 | 7750 | 0.0268 | - | |
|
| 2.8835 | 7800 | 0.0306 | - | |
|
| 2.9020 | 7850 | 0.0655 | - | |
|
| 2.9205 | 7900 | 0.1469 | - | |
|
| 2.9390 | 7950 | 0.0454 | - | |
|
| 2.9575 | 8000 | 0.0754 | - | |
|
| 2.9760 | 8050 | 0.0587 | - | |
|
| 2.9945 | 8100 | 0.0452 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.9.16 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.0 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.14.6 |
|
- Tokenizers: 0.14.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |