SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
5 |
|
7 |
|
9 |
|
0 |
|
2 |
|
3 |
|
6 |
|
4 |
|
1 |
|
10 |
|
8 |
|
11 |
|
12 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.5465 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-13classes-single_label")
# Run inference
preds = model("my dad had huge ones..so they may be real..")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.8891 | 1681 |
Label | Training Sample Count |
---|---|
0 | 119 |
1 | 81 |
2 | 64 |
3 | 34 |
4 | 46 |
5 | 39 |
6 | 35 |
7 | 37 |
8 | 24 |
9 | 26 |
10 | 18 |
11 | 11 |
12 | 7 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 22
- body_learning_rate: (1.698e-05, 1.698e-05)
- head_learning_rate: 1.698e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 39
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3701 | - |
0.0185 | 50 | 0.2605 | - |
0.0370 | 100 | 0.2727 | - |
0.0555 | 150 | 0.2389 | - |
0.0739 | 200 | 0.2466 | - |
0.0924 | 250 | 0.206 | - |
0.1109 | 300 | 0.2218 | - |
0.1294 | 350 | 0.1745 | - |
0.1479 | 400 | 0.2955 | - |
0.1664 | 450 | 0.1405 | - |
0.1848 | 500 | 0.202 | - |
0.2033 | 550 | 0.1614 | - |
0.2218 | 600 | 0.1953 | - |
0.2403 | 650 | 0.067 | - |
0.2588 | 700 | 0.0841 | - |
0.2773 | 750 | 0.0769 | - |
0.2957 | 800 | 0.0824 | - |
0.3142 | 850 | 0.0629 | - |
0.3327 | 900 | 0.0086 | - |
0.3512 | 950 | 0.0589 | - |
0.3697 | 1000 | 0.0469 | - |
0.3882 | 1050 | 0.0312 | - |
0.4067 | 1100 | 0.0597 | - |
0.4251 | 1150 | 0.0054 | - |
0.4436 | 1200 | 0.0029 | - |
0.4621 | 1250 | 0.0031 | - |
0.4806 | 1300 | 0.0638 | - |
0.4991 | 1350 | 0.0024 | - |
0.5176 | 1400 | 0.0023 | - |
0.5360 | 1450 | 0.0094 | - |
0.5545 | 1500 | 0.0017 | - |
0.5730 | 1550 | 0.0017 | - |
0.5915 | 1600 | 0.0371 | - |
0.6100 | 1650 | 0.0005 | - |
0.6285 | 1700 | 0.0014 | - |
0.6470 | 1750 | 0.0009 | - |
0.6654 | 1800 | 0.0103 | - |
0.6839 | 1850 | 0.0035 | - |
0.7024 | 1900 | 0.0007 | - |
0.7209 | 1950 | 0.0219 | - |
0.7394 | 2000 | 0.0014 | - |
0.7579 | 2050 | 0.0008 | - |
0.7763 | 2100 | 0.0007 | - |
0.7948 | 2150 | 0.0006 | - |
0.8133 | 2200 | 0.0054 | - |
0.8318 | 2250 | 0.0008 | - |
0.8503 | 2300 | 0.0008 | - |
0.8688 | 2350 | 0.0007 | - |
0.8872 | 2400 | 0.0007 | - |
0.9057 | 2450 | 0.001 | - |
0.9242 | 2500 | 0.0005 | - |
0.9427 | 2550 | 0.0005 | - |
0.9612 | 2600 | 0.0009 | - |
0.9797 | 2650 | 0.0003 | - |
0.9982 | 2700 | 0.0008 | - |
1.0166 | 2750 | 0.0006 | - |
1.0351 | 2800 | 0.0004 | - |
1.0536 | 2850 | 0.0002 | - |
1.0721 | 2900 | 0.001 | - |
1.0906 | 2950 | 0.0006 | - |
1.1091 | 3000 | 0.0007 | - |
1.1275 | 3050 | 0.001 | - |
1.1460 | 3100 | 0.0003 | - |
1.1645 | 3150 | 0.0004 | - |
1.1830 | 3200 | 0.0016 | - |
1.2015 | 3250 | 0.0016 | - |
1.2200 | 3300 | 0.0001 | - |
1.2384 | 3350 | 0.0001 | - |
1.2569 | 3400 | 0.0003 | - |
1.2754 | 3450 | 0.0002 | - |
1.2939 | 3500 | 0.0003 | - |
1.3124 | 3550 | 0.0003 | - |
1.3309 | 3600 | 0.0003 | - |
1.3494 | 3650 | 0.001 | - |
1.3678 | 3700 | 0.0002 | - |
1.3863 | 3750 | 0.0003 | - |
1.4048 | 3800 | 0.0002 | - |
1.4233 | 3850 | 0.0001 | - |
1.4418 | 3900 | 0.0003 | - |
1.4603 | 3950 | 0.0001 | - |
1.4787 | 4000 | 0.0002 | - |
1.4972 | 4050 | 0.0001 | - |
1.5157 | 4100 | 0.0001 | - |
1.5342 | 4150 | 0.0001 | - |
1.5527 | 4200 | 0.0003 | - |
1.5712 | 4250 | 0.0001 | - |
1.5896 | 4300 | 0.0003 | - |
1.6081 | 4350 | 0.0005 | - |
1.6266 | 4400 | 0.0002 | - |
1.6451 | 4450 | 0.0001 | - |
1.6636 | 4500 | 0.0001 | - |
1.6821 | 4550 | 0.0002 | - |
1.7006 | 4600 | 0.0001 | - |
1.7190 | 4650 | 0.0001 | - |
1.7375 | 4700 | 0.0002 | - |
1.7560 | 4750 | 0.0001 | - |
1.7745 | 4800 | 0.0 | - |
1.7930 | 4850 | 0.0002 | - |
1.8115 | 4900 | 0.0001 | - |
1.8299 | 4950 | 0.0001 | - |
1.8484 | 5000 | 0.0001 | - |
1.8669 | 5050 | 0.0001 | - |
1.8854 | 5100 | 0.0002 | - |
1.9039 | 5150 | 0.0001 | - |
1.9224 | 5200 | 0.0001 | - |
1.9409 | 5250 | 0.0 | - |
1.9593 | 5300 | 0.0001 | - |
1.9778 | 5350 | 0.0002 | - |
1.9963 | 5400 | 0.0001 | - |
2.0148 | 5450 | 0.0001 | - |
2.0333 | 5500 | 0.0002 | - |
2.0518 | 5550 | 0.0001 | - |
2.0702 | 5600 | 0.0003 | - |
2.0887 | 5650 | 0.0001 | - |
2.1072 | 5700 | 0.0002 | - |
2.1257 | 5750 | 0.0002 | - |
2.1442 | 5800 | 0.0001 | - |
2.1627 | 5850 | 0.0001 | - |
2.1811 | 5900 | 0.0001 | - |
2.1996 | 5950 | 0.0001 | - |
2.2181 | 6000 | 0.0001 | - |
2.2366 | 6050 | 0.0001 | - |
2.2551 | 6100 | 0.0001 | - |
2.2736 | 6150 | 0.0001 | - |
2.2921 | 6200 | 0.0001 | - |
2.3105 | 6250 | 0.0001 | - |
2.3290 | 6300 | 0.0002 | - |
2.3475 | 6350 | 0.0002 | - |
2.3660 | 6400 | 0.0002 | - |
2.3845 | 6450 | 0.0001 | - |
2.4030 | 6500 | 0.0001 | - |
2.4214 | 6550 | 0.0001 | - |
2.4399 | 6600 | 0.0001 | - |
2.4584 | 6650 | 0.0001 | - |
2.4769 | 6700 | 0.0001 | - |
2.4954 | 6750 | 0.0001 | - |
2.5139 | 6800 | 0.0001 | - |
2.5323 | 6850 | 0.0002 | - |
2.5508 | 6900 | 0.0001 | - |
2.5693 | 6950 | 0.0003 | - |
2.5878 | 7000 | 0.0001 | - |
2.6063 | 7050 | 0.0001 | - |
2.6248 | 7100 | 0.0001 | - |
2.6433 | 7150 | 0.0009 | - |
2.6617 | 7200 | 0.0004 | - |
2.6802 | 7250 | 0.0001 | - |
2.6987 | 7300 | 0.0 | - |
2.7172 | 7350 | 0.0002 | - |
2.7357 | 7400 | 0.0001 | - |
2.7542 | 7450 | 0.0001 | - |
2.7726 | 7500 | 0.0 | - |
2.7911 | 7550 | 0.0001 | - |
2.8096 | 7600 | 0.0001 | - |
2.8281 | 7650 | 0.0001 | - |
2.8466 | 7700 | 0.0001 | - |
2.8651 | 7750 | 0.0001 | - |
2.8835 | 7800 | 0.0001 | - |
2.9020 | 7850 | 0.0001 | - |
2.9205 | 7900 | 0.0002 | - |
2.9390 | 7950 | 0.0002 | - |
2.9575 | 8000 | 0.0001 | - |
2.9760 | 8050 | 0.0001 | - |
2.9945 | 8100 | 0.0001 | - |
0.0003 | 1 | 0.0002 | - |
0.0168 | 50 | 0.0001 | - |
0.0336 | 100 | 0.0002 | - |
0.0504 | 150 | 0.0001 | - |
0.0672 | 200 | 0.0001 | - |
0.0840 | 250 | 0.0 | - |
0.1008 | 300 | 0.0001 | - |
0.1176 | 350 | 0.0001 | - |
0.1344 | 400 | 0.0001 | - |
0.1512 | 450 | 0.0004 | - |
0.1680 | 500 | 0.0001 | - |
0.1848 | 550 | 0.0003 | - |
0.2016 | 600 | 0.0003 | - |
0.2184 | 650 | 0.0007 | - |
0.2352 | 700 | 0.0005 | - |
0.2520 | 750 | 0.0 | - |
0.2688 | 800 | 0.0002 | - |
0.2856 | 850 | 0.0002 | - |
0.3024 | 900 | 0.0002 | - |
0.3192 | 950 | 0.0001 | - |
0.3360 | 1000 | 0.0002 | - |
0.3528 | 1050 | 0.0007 | - |
0.3696 | 1100 | 0.0001 | - |
0.3864 | 1150 | 0.0004 | - |
0.4032 | 1200 | 0.0002 | - |
0.4200 | 1250 | 0.0004 | - |
0.4368 | 1300 | 0.0004 | - |
0.4536 | 1350 | 0.0037 | - |
0.4704 | 1400 | 0.0406 | - |
0.4872 | 1450 | 0.0003 | - |
0.5040 | 1500 | 0.0001 | - |
0.5208 | 1550 | 0.0003 | - |
0.5376 | 1600 | 0.0002 | - |
0.5544 | 1650 | 0.0001 | - |
0.5712 | 1700 | 0.0002 | - |
0.5880 | 1750 | 0.0002 | - |
0.6048 | 1800 | 0.0001 | - |
0.6216 | 1850 | 0.0 | - |
0.6384 | 1900 | 0.0001 | - |
0.6552 | 1950 | 0.0003 | - |
0.6720 | 2000 | 0.0 | - |
0.6888 | 2050 | 0.0001 | - |
0.7056 | 2100 | 0.0003 | - |
0.7224 | 2150 | 0.0 | - |
0.7392 | 2200 | 0.1019 | - |
0.7560 | 2250 | 0.0001 | - |
0.7728 | 2300 | 0.0001 | - |
0.7897 | 2350 | 0.0001 | - |
0.8065 | 2400 | 0.0 | - |
0.8233 | 2450 | 0.0 | - |
0.8401 | 2500 | 0.0002 | - |
0.8569 | 2550 | 0.0001 | - |
0.8737 | 2600 | 0.0001 | - |
0.8905 | 2650 | 0.0001 | - |
0.9073 | 2700 | 0.0001 | - |
0.9241 | 2750 | 0.0001 | - |
0.9409 | 2800 | 0.0002 | - |
0.9577 | 2850 | 0.0 | - |
0.9745 | 2900 | 0.0001 | - |
0.9913 | 2950 | 0.0001 | - |
1.0081 | 3000 | 0.0001 | - |
1.0249 | 3050 | 0.0 | - |
1.0417 | 3100 | 0.0001 | - |
1.0585 | 3150 | 0.0001 | - |
1.0753 | 3200 | 0.0001 | - |
1.0921 | 3250 | 0.0 | - |
1.1089 | 3300 | 0.0001 | - |
1.1257 | 3350 | 0.0001 | - |
1.1425 | 3400 | 0.0001 | - |
1.1593 | 3450 | 0.0001 | - |
1.1761 | 3500 | 0.0001 | - |
1.1929 | 3550 | 0.0 | - |
1.2097 | 3600 | 0.0001 | - |
1.2265 | 3650 | 0.0 | - |
1.2433 | 3700 | 0.0001 | - |
1.2601 | 3750 | 0.0001 | - |
1.2769 | 3800 | 0.0 | - |
1.2937 | 3850 | 0.0001 | - |
1.3105 | 3900 | 0.0 | - |
1.3273 | 3950 | 0.0001 | - |
1.3441 | 4000 | 0.0002 | - |
1.3609 | 4050 | 0.0001 | - |
1.3777 | 4100 | 0.0001 | - |
1.3945 | 4150 | 0.0001 | - |
1.4113 | 4200 | 0.0 | - |
1.4281 | 4250 | 0.0001 | - |
1.4449 | 4300 | 0.0 | - |
1.4617 | 4350 | 0.0001 | - |
1.4785 | 4400 | 0.0001 | - |
1.4953 | 4450 | 0.0001 | - |
1.5121 | 4500 | 0.0001 | - |
1.5289 | 4550 | 0.0001 | - |
1.5457 | 4600 | 0.0 | - |
1.5625 | 4650 | 0.0001 | - |
1.5793 | 4700 | 0.0001 | - |
1.5961 | 4750 | 0.0001 | - |
1.6129 | 4800 | 0.0002 | - |
1.6297 | 4850 | 0.0 | - |
1.6465 | 4900 | 0.0002 | - |
1.6633 | 4950 | 0.0 | - |
1.6801 | 5000 | 0.0 | - |
1.6969 | 5050 | 0.0001 | - |
1.7137 | 5100 | 0.0001 | - |
1.7305 | 5150 | 0.0 | - |
1.7473 | 5200 | 0.0 | - |
1.7641 | 5250 | 0.0001 | - |
1.7809 | 5300 | 0.0001 | - |
1.7977 | 5350 | 0.0 | - |
1.8145 | 5400 | 0.0003 | - |
1.8313 | 5450 | 0.0 | - |
1.8481 | 5500 | 0.0001 | - |
1.8649 | 5550 | 0.0001 | - |
1.8817 | 5600 | 0.0001 | - |
1.8985 | 5650 | 0.0001 | - |
1.9153 | 5700 | 0.158 | - |
1.9321 | 5750 | 0.0012 | - |
1.9489 | 5800 | 0.0424 | - |
1.9657 | 5850 | 0.0011 | - |
1.9825 | 5900 | 0.0002 | - |
1.9993 | 5950 | 0.1197 | - |
2.0161 | 6000 | 0.0001 | - |
2.0329 | 6050 | 0.2476 | - |
2.0497 | 6100 | 0.0029 | - |
2.0665 | 6150 | 0.0 | - |
2.0833 | 6200 | 0.0 | - |
2.1001 | 6250 | 0.0 | - |
2.1169 | 6300 | 0.0001 | - |
2.1337 | 6350 | 0.1151 | - |
2.1505 | 6400 | 0.0001 | - |
2.1673 | 6450 | 0.0001 | - |
2.1841 | 6500 | 0.0003 | - |
2.2009 | 6550 | 0.1204 | - |
2.2177 | 6600 | 0.0001 | - |
2.2345 | 6650 | 0.0 | - |
2.2513 | 6700 | 0.0016 | - |
2.2681 | 6750 | 0.0001 | - |
2.2849 | 6800 | 0.0008 | - |
2.3017 | 6850 | 0.0001 | - |
2.3185 | 6900 | 0.0 | - |
2.3353 | 6950 | 0.0 | - |
2.3522 | 7000 | 0.0 | - |
2.3690 | 7050 | 0.0003 | - |
2.3858 | 7100 | 0.0 | - |
2.4026 | 7150 | 0.0 | - |
2.4194 | 7200 | 0.0001 | - |
2.4362 | 7250 | 0.0 | - |
2.4530 | 7300 | 0.0001 | - |
2.4698 | 7350 | 0.0001 | - |
2.4866 | 7400 | 0.0001 | - |
2.5034 | 7450 | 0.0 | - |
2.5202 | 7500 | 0.0001 | - |
2.5370 | 7550 | 0.0001 | - |
2.5538 | 7600 | 0.0 | - |
2.5706 | 7650 | 0.0 | - |
2.5874 | 7700 | 0.0 | - |
2.6042 | 7750 | 0.0002 | - |
2.6210 | 7800 | 0.0001 | - |
2.6378 | 7850 | 0.0001 | - |
2.6546 | 7900 | 0.0 | - |
2.6714 | 7950 | 0.0001 | - |
2.6882 | 8000 | 0.0001 | - |
2.7050 | 8050 | 0.0 | - |
2.7218 | 8100 | 0.0 | - |
2.7386 | 8150 | 0.0001 | - |
2.7554 | 8200 | 0.0 | - |
2.7722 | 8250 | 0.0 | - |
2.7890 | 8300 | 0.0 | - |
2.8058 | 8350 | 0.0 | - |
2.8226 | 8400 | 0.0 | - |
2.8394 | 8450 | 0.0 | - |
2.8562 | 8500 | 0.0 | - |
2.8730 | 8550 | 0.0 | - |
2.8898 | 8600 | 0.0001 | - |
2.9066 | 8650 | 0.0001 | - |
2.9234 | 8700 | 0.0 | - |
2.9402 | 8750 | 0.0002 | - |
2.9570 | 8800 | 0.0 | - |
2.9738 | 8850 | 0.0001 | - |
2.9906 | 8900 | 0.0001 | - |
3.0074 | 8950 | 0.0001 | - |
3.0242 | 9000 | 0.0001 | - |
3.0410 | 9050 | 0.0 | - |
3.0578 | 9100 | 0.0 | - |
3.0746 | 9150 | 0.0001 | - |
3.0914 | 9200 | 0.0001 | - |
3.1082 | 9250 | 0.0001 | - |
3.125 | 9300 | 0.0 | - |
3.1418 | 9350 | 0.0 | - |
3.1586 | 9400 | 0.0001 | - |
3.1754 | 9450 | 0.0001 | - |
3.1922 | 9500 | 0.0 | - |
3.2090 | 9550 | 0.0 | - |
3.2258 | 9600 | 0.0 | - |
3.2426 | 9650 | 0.0 | - |
3.2594 | 9700 | 0.0 | - |
3.2762 | 9750 | 0.0002 | - |
3.2930 | 9800 | 0.0001 | - |
3.3098 | 9850 | 0.0 | - |
3.3266 | 9900 | 0.0 | - |
3.3434 | 9950 | 0.0 | - |
3.3602 | 10000 | 0.0 | - |
3.3770 | 10050 | 0.0001 | - |
3.3938 | 10100 | 0.0001 | - |
3.4106 | 10150 | 0.0 | - |
3.4274 | 10200 | 0.0 | - |
3.4442 | 10250 | 0.0001 | - |
3.4610 | 10300 | 0.0 | - |
3.4778 | 10350 | 0.1212 | - |
3.4946 | 10400 | 0.0001 | - |
3.5114 | 10450 | 0.0 | - |
3.5282 | 10500 | 0.1183 | - |
3.5450 | 10550 | 0.0 | - |
3.5618 | 10600 | 0.0002 | - |
3.5786 | 10650 | 0.0001 | - |
3.5954 | 10700 | 0.0 | - |
3.6122 | 10750 | 0.0 | - |
3.6290 | 10800 | 0.0001 | - |
3.6458 | 10850 | 0.0001 | - |
3.6626 | 10900 | 0.0 | - |
3.6794 | 10950 | 0.0 | - |
3.6962 | 11000 | 0.0 | - |
3.7130 | 11050 | 0.0 | - |
3.7298 | 11100 | 0.0 | - |
3.7466 | 11150 | 0.0 | - |
3.7634 | 11200 | 0.0 | - |
3.7802 | 11250 | 0.0 | - |
3.7970 | 11300 | 0.0 | - |
3.8138 | 11350 | 0.0 | - |
3.8306 | 11400 | 0.0 | - |
3.8474 | 11450 | 0.0 | - |
3.8642 | 11500 | 0.0001 | - |
3.8810 | 11550 | 0.0 | - |
3.8978 | 11600 | 0.0001 | - |
3.9147 | 11650 | 0.0 | - |
3.9315 | 11700 | 0.0001 | - |
3.9483 | 11750 | 0.0001 | - |
3.9651 | 11800 | 0.0001 | - |
3.9819 | 11850 | 0.0 | - |
3.9987 | 11900 | 0.0 | - |
Framework Versions
- Python: 3.9.16
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.0
- PyTorch: 2.1.0+cu121
- Datasets: 2.14.6
- Tokenizers: 0.14.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.