CrystalMistral-24B / README.md
Crystalcareai's picture
Upload folder using huggingface_hub
39bdc28 verified
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- eren23/dpo-binarized-NeuralTrix-7B
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
- Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp
- cognitivecomputations/WestLake-7B-v2-laser
base_model:
- eren23/dpo-binarized-NeuralTrix-7B
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
- Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp
- cognitivecomputations/WestLake-7B-v2-laser
---
# CrystalMistral-24B
CrystalMistral-24B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B)
* [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo)
* [Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp](https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp)
* [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser)
## 🧩 Configuration
```yaml
base_model: eren23/dpo-binarized-NeuralTrix-7B
gate_mode: hidden
dtype: bfloat16
experts:
- source_model: eren23/dpo-binarized-NeuralTrix-7B
positive_prompts:
- "Generate a response to a given situation"
- "Explain the concept of climate change"
- source_model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
positive_prompts:
- "What is the capital of France?"
- "Who wrote the novel 'Pride and Prejudice'?"
- source_model: Weyaxi/OpenHermes-2.5-neural-chat-v3-2-Slerp
positive_prompts:
- "Write a short poem about spring"
- "Design a logo for a tech startup called 'GreenLeaf'"
- source_model: cognitivecomputations/WestLake-7B-v2-laser
positive_prompts:
- "Solve the equation x^2 + 3x - 10 = 0"
- "Calculate the area of a circle with radius 5 units"
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Crystalcareai/CrystalMistral-24B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```