ISSR_Visual_Model
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("D0men1c0/ISSR_Visual_Model")
topic_model.get_topic_info()
You can make predictions as follows:
val_labels = [...] # list of caption
val_images = [...] # list of images
topic, _ = topic_model.transform(val_labels, images=val_images)
all_topic_info = [topic_model.get_topic_info(t) for t in topic]
all_prediction_info = pd.concat(all_topic_info, ignore_index=True)
# Visualize predictions:
sample_images = 100
n_images = min(sample_images, len(val_images))
n_cols = 4
n_rows = math.ceil(n_images / n_cols)
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, n_rows * 3))
axes = axes.flatten()
for i, (path, (_, row)) in enumerate(zip(val_images[:n_images], all_prediction_info.iterrows())):
ax = axes[i]
ax.imshow(Image.open(path))
ax.axis('off')
ax.set_title(f"Topic {row['Topic']}: {row['KeyBERTInspired'][0]}")
# Hide unused axes
for j in range(n_images, len(axes)):
axes[j].axis('off')
plt.tight_layout()
plt.show()
Topic overview
- Number of topics: 5
- Number of training documents: 2997
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | drug - people - gun - - | 151 | -1_drug_people_gun_ |
0 | gun - people - drug - - | 2152 | 0_gun_people_drug_ |
1 | drug - gun - - - | 342 | 1_drug_gun__ |
2 | people - gun - - - | 287 | 2_people_gun__ |
3 | people - gun - drug - - | 65 | 3_people_gun_drug_ |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 50
- n_gram_range: (1, 3)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 5
- verbose: True
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 1.26.4
- HDBSCAN: 0.8.36
- UMAP: 0.5.6
- Pandas: 2.2.2
- Scikit-Learn: 1.4.1.post1
- Sentence-transformers: 3.0.1
- Transformers: 4.39.3
- Numba: 0.60.0
- Plotly: 5.22.0
- Python: 3.12.4
- Downloads last month
- 5