metadata
license: apache-2.0
datasets:
- lmms-lab/ClothoAQA
- Loie/VGGSound
language:
- en
metrics:
- accuracy
pipeline_tag: visual-question-answering
library_name: transformers
tags:
- Audio-visual Question Answering
- Audio Question Answering
- multimodal large language model
VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs
If you like our project, please give us a star β on Github for the latest update.
π° News
- [2024.10.22] Release checkpoints of VideoLLaMA2.1-7B-AV
- [2024.10.15] Release checkpoints of VideoLLaMA2.1-7B-16F-Base and VideoLLaMA2.1-7B-16F
- [2024.08.14] Release checkpoints of VideoLLaMA2-72B-Base and VideoLLaMA2-72B
- [2024.07.30] Release checkpoints of VideoLLaMA2-8x7B-Base and VideoLLaMA2-8x7B.
- [2024.06.25] π₯π₯ As of Jun 25, our VideoLLaMA2-7B-16F is the Top-1 ~7B-sized VideoLLM on the MLVU Leaderboard.
- [2024.06.18] π₯π₯ As of Jun 18, our VideoLLaMA2-7B-16F is the Top-1 ~7B-sized VideoLLM on the VideoMME Leaderboard.
- [2024.06.17] ππ Update technical report with the latest results and the missing references. If you have works closely related to VideoLLaMA 2 but not mentioned in the paper, feel free to let us know.
- [2024.06.14] π₯π₯ Online Demo is available.
- [2024.06.03] Release training, evaluation, and serving codes of VideoLLaMA 2.
π Model Zoo
Vision-Only Checkpoints
Model Name | Type | Visual Encoder | Language Decoder | # Training Frames |
---|---|---|---|---|
VideoLLaMA2-7B-Base | Base | clip-vit-large-patch14-336 | Mistral-7B-Instruct-v0.2 | 8 |
VideoLLaMA2-7B | Chat | clip-vit-large-patch14-336 | Mistral-7B-Instruct-v0.2 | 8 |
VideoLLaMA2-7B-16F-Base | Base | clip-vit-large-patch14-336 | Mistral-7B-Instruct-v0.2 | 16 |
VideoLLaMA2-7B-16F | Chat | clip-vit-large-patch14-336 | Mistral-7B-Instruct-v0.2 | 16 |
VideoLLaMA2-8x7B-Base | Base | clip-vit-large-patch14-336 | Mixtral-8x7B-Instruct-v0.1 | 8 |
VideoLLaMA2-8x7B | Chat | clip-vit-large-patch14-336 | Mixtral-8x7B-Instruct-v0.1 | 8 |
VideoLLaMA2-72B-Base | Base | clip-vit-large-patch14-336 | Qwen2-72B-Instruct | 8 |
VideoLLaMA2-72B | Chat | clip-vit-large-patch14-336 | Qwen2-72B-Instruct | 8 |
VideoLLaMA2.1-7B-16F-Base | Base | siglip-so400m-patch14-384 | Qwen2-7B-Instruct | 16 |
VideoLLaMA2.1-7B-16F | Chat | siglip-so400m-patch14-384 | Qwen2-7B-Instruct | 16 |
Audio-Visual Checkpoints
Model Name | Type | Audio Encoder | Language Decoder |
---|---|---|---|
VideoLLaMA2.1-7B-AV (This Checkpoint) | Chat | Fine-tuned BEATs_iter3+(AS2M)(cpt2) | VideoLLaMA2.1-7B-16F |
π Main Results
Multi-Choice Video QA & Video Captioning
Open-Ended Video QA
Multi-Choice & Open-Ended Audio QA
Open-Ended Audio-Visual QA
π€ Inference with VideoLLaMA2-AV
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
import argparse
def inference(args):
model_path = args.model_path
model, processor, tokenizer = model_init(model_path)
if args.modal_type == "a":
model.model.vision_tower = None
elif args.modal_type == "v":
model.model.audio_tower = None
elif args.modal_type == "av":
pass
else:
raise NotImplementedError
# Audio-visual Inference
audio_video_path = "assets/00003491.mp4"
preprocess = processor['audio' if args.modal_type == "a" else "video"]
if args.modal_type == "a":
audio_video_tensor = preprocess(audio_video_path)
else:
audio_video_tensor = preprocess(audio_video_path, va=True if args.modal_type == "av" else False)
question = f"Please describe the video with audio information."
# Audio Inference
audio_video_path = "assets/bird-twitter-car.wav"
preprocess = processor['audio' if args.modal_type == "a" else "video"]
if args.modal_type == "a":
audio_video_tensor = preprocess(audio_video_path)
else:
audio_video_tensor = preprocess(audio_video_path, va=True if args.modal_type == "av" else False)
question = f"Please describe the audio."
# Video Inference
audio_video_path = "assets/output_v_1jgsRbGzCls.mp4"
preprocess = processor['audio' if args.modal_type == "a" else "video"]
if args.modal_type == "a":
audio_video_tensor = preprocess(audio_video_path)
else:
audio_video_tensor = preprocess(audio_video_path, va=True if args.modal_type == "av" else False)
question = f"What activity are the people practicing in the video?"
output = mm_infer(
audio_video_tensor,
question,
model=model,
tokenizer=tokenizer,
modal='audio' if args.modal_type == "a" else "video",
do_sample=False,
)
print(output)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', help='', , required=False, default='DAMO-NLP-SG/VideoLLaMA2.1-7B-AV')
parser.add_argument('--modal-type', choices=["a", "v", "av"], help='', required=True)
args = parser.parse_args()
inference(args)
Citation
If you find VideoLLaMA useful for your research and applications, please cite using this BibTeX:
@article{damonlpsg2024videollama2,
title={VideoLLaMA 2: Advancing Spatial-Temporal Modeling and Audio Understanding in Video-LLMs},
author={Cheng, Zesen and Leng, Sicong and Zhang, Hang and Xin, Yifei and Li, Xin and Chen, Guanzheng and Zhu, Yongxin and Zhang, Wenqi and Luo, Ziyang and Zhao, Deli and Bing, Lidong},
journal={arXiv preprint arXiv:2406.07476},
year={2024},
url = {https://arxiv.org/abs/2406.07476}
}
@article{damonlpsg2023videollama,
title = {Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding},
author = {Zhang, Hang and Li, Xin and Bing, Lidong},
journal = {arXiv preprint arXiv:2306.02858},
year = {2023},
url = {https://arxiv.org/abs/2306.02858}
}