CORe Model - Clinical Mortality Risk Prediction
Model description
The CORe (Clinical Outcome Representations) model is introduced in the paper Clinical Outcome Predictions from Admission Notes using Self-Supervised Knowledge Integration. It is based on BioBERT and further pre-trained on clinical notes, disease descriptions and medical articles with a specialised Clinical Outcome Pre-Training objective.
This model checkpoint is fine-tuned on the task of mortality risk prediction. The model expects patient admission notes as input and outputs the predicted risk of in-hospital mortality.
How to use CORe Mortality Risk Prediction
You can load the model via the transformers library:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("bvanaken/CORe-clinical-mortality-prediction")
model = AutoModelForSequenceClassification.from_pretrained("bvanaken/CORe-clinical-mortality-prediction")
The following code shows an inference example:
input = "CHIEF COMPLAINT: Headaches\n\nPRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED with the worst headache of his life."
tokenized_input = tokenizer(input, return_tensors="pt")
output = model(**tokenized_input)
import torch
predictions = torch.softmax(output.logits.detach(), dim=1)
mortality_risk_prediction = predictions[0][1].item()
More Information
For all the details about CORe and contact info, please visit CORe.app.datexis.com.
Cite
@inproceedings{vanaken21,
author = {Betty van Aken and
Jens-Michalis Papaioannou and
Manuel Mayrdorfer and
Klemens Budde and
Felix A. Gers and
Alexander Löser},
title = {Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration},
booktitle = {Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, {EACL} 2021,
Online, April 19 - 23, 2021},
publisher = {Association for Computational Linguistics},
year = {2021},
}
- Downloads last month
- 26
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.