DGurgurov's picture
Upload clip_finetune.py
912047e verified
import os
import random
from functools import partial
from typing import Any
import evaluate
import numpy as np
import torch
import torch.nn as nn
from datasets import Dataset, DatasetDict, load_dataset
from torch.utils.data import DataLoader
from tqdm.notebook import tqdm
from transformers import (CLIPImageProcessor, CLIPModel, CLIPProcessor,
CLIPTokenizerFast, Trainer, TrainingArguments)
from datasets.formatting.formatting import LazyBatch
from huggingface_hub import HfApi, login, create_repo
# Environment settings
os.environ["CURL_CA_BUNDLE"] = ""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Seed setting
def seed_all(seed: int):
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
seed_all(69)
# Dataset preparation
dataset = load_dataset("pcuenq/oxford-pets")
dataset_train_val = dataset['train'].train_test_split(test_size=0.3)
dataset_val_test = dataset_train_val['test'].train_test_split(test_size=0.2)
dataset = DatasetDict({
"train": dataset_train_val['train'],
"val": dataset_val_test['test'],
"test": dataset_val_test['train']
})
labels = set(dataset['train']['label'])
label2id = {label: i for i, label in enumerate(labels)}
id2label = {i: label for label, i in label2id.items()}
labels = list(label2id)
MODEL_NAME = "openai/clip-vit-base-patch32"
TOKENIZER = CLIPTokenizerFast.from_pretrained(MODEL_NAME)
IMAGE_PROCESSOR = CLIPImageProcessor.from_pretrained(MODEL_NAME)
# Transformation functions
def transform_class_labels(items: LazyBatch, tokenizer: CLIPTokenizerFast, label2id: dict[str, int]) -> dict[str, Any]:
label_prompt = [f"a photo of {label}" for label in items["label"]]
output = tokenizer(label_prompt, padding=True, return_tensors="pt")
items["input_ids"] = output["input_ids"]
items["attention_mask"] = output["attention_mask"]
items["label_id"] = [label2id[label] for label in items["label"]]
return items
def transform_image(items: LazyBatch, image_processor: CLIPImageProcessor) -> dict[str, Any]:
output = image_processor(items["image"], return_tensors="pt")
items["pixel_values"] = output["pixel_values"]
return items
dataset = dataset.map(partial(transform_class_labels, tokenizer=TOKENIZER, label2id=label2id), batched=True)
dataset.set_transform(partial(transform_image, image_processor=IMAGE_PROCESSOR))
# Utility functions
def get_module_device(module: nn.Module) -> torch.device:
return next(module.parameters()).device
def freeze_params(module: nn.Module, freeze_top_percent: float = 1.0) -> None:
all_params_length = len(list(module.parameters()))
for indx, param in enumerate(module.parameters()):
if int(all_params_length * freeze_top_percent) <= indx:
break
param.requires_grad = False
def print_trainable_parameters(model: nn.Module) -> None:
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"Trainable params: {(trainable_params / 10**6):.4f}M || All params: {(all_param / 10**6):.4f}M || Trainable%: {100 * trainable_params / all_param:.2f}%"
)
# CLIP Classifier model
class CLIPClassifier(nn.Module):
def __init__(self, clip_model: CLIPModel, tokenizer: CLIPTokenizerFast, labels: list[str]):
super().__init__()
self.model = clip_model
self.tokenizer = tokenizer
self.logit_scale = self.model.logit_scale.exp()
self.label2id = {label: i for i, label in enumerate(labels)}
self.labels_embeddings = nn.Parameter(self.generate_labels_embeddings(labels))
def generate_labels_embeddings(self, labels: list[str]) -> torch.Tensor:
labels_inputs = self.tokenizer(
[f"a photo of {label}" for label in labels],
return_tensors="pt",
padding=True,
).to(get_module_device(self.model))
labels_embeddings = self.model.get_text_features(**labels_inputs)
labels_embeddings /= labels_embeddings.norm(p=2, dim=-1, keepdim=True)
return labels_embeddings
def forward(self, images: torch.Tensor) -> torch.Tensor:
image_features = self.model.get_image_features(images)
image_features /= image_features.norm(p=2, dim=-1, keepdim=True)
return torch.matmul(image_features, self.labels_embeddings.T) * self.logit_scale
# Evaluation function
def calculate_accuracy(model: CLIPClassifier, dataloader: DataLoader) -> float:
metric = evaluate.load("accuracy")
predictions_list = []
references_list = []
device = get_module_device(model)
for batch in tqdm(dataloader, total=len(dataloader), desc="Evaluate model on dataset"):
batch["pixel_values"] = batch["pixel_values"].to(device)
predictions = model(batch["pixel_values"])
predictions_list.append(torch.argmax(predictions, dim=1))
references_list.append(batch["label_id"])
return metric.compute(
predictions=torch.concat(predictions_list),
references=torch.concat(references_list),
)["accuracy"]
def collate_fn(items: LazyBatch) -> dict[str, Any]:
return {
"pixel_values": torch.stack([item["pixel_values"] for item in items]),
"input_ids": torch.tensor([item["input_ids"] for item in items]),
"attention_mask": torch.tensor([item["attention_mask"] for item in items]),
"label_id": torch.tensor([item["label_id"] for item in items]),
"return_loss": True,
}
@torch.no_grad()
def evaluate_clip_classifier(
model: nn.Module,
dataset: Dataset,
tokenizer: CLIPTokenizerFast,
labels: list[str],
batch_size: int = 64,
num_workers: int = 5,
device: str = "cuda",
) -> None:
clip_classifier = CLIPClassifier(model, tokenizer, labels)
test_dataloader = DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn
)
clip_classifier = clip_classifier.to(device)
acc = calculate_accuracy(clip_classifier, test_dataloader)
print(f"Model accuracy: {acc}")
def collate_train_fn(items: LazyBatch):
items = collate_fn(items)
items.pop("label_id")
return items
def get_default_training_args(
experiment_name: str,
lr: float,
batch_size: int = 256,
num_epoch: int = 4,
num_workers: int = 15,
) -> TrainingArguments:
return TrainingArguments(
experiment_name,
per_device_train_batch_size=batch_size,
learning_rate=lr,
num_train_epochs=num_epoch,
per_device_eval_batch_size=batch_size,
gradient_accumulation_steps=1,
logging_steps=10,
save_total_limit=2,
evaluation_strategy="epoch",
save_strategy="epoch",
fp16=True,
remove_unused_columns=False,
load_best_model_at_end=True,
dataloader_num_workers=num_workers,
)
# Training
clip_full_finetuned = CLIPModel.from_pretrained(MODEL_NAME)
trainer = Trainer(
model=clip_full_finetuned,
args=get_default_training_args("clip-all-layers-tuning-oxford-pets", 3e-6),
data_collator=collate_train_fn,
train_dataset=dataset["train"],
eval_dataset=dataset["val"],
)
trainer.train()
print_trainable_parameters(clip_full_finetuned)
evaluate_clip_classifier(clip_full_finetuned, dataset['test'], TOKENIZER, labels)
# Hugging Face Hub interaction
login(token='TOKEN')
api = HfApi()
repo_url = create_repo(repo_id="DGurgurov/clip-vit-base-patch32-oxford-pets", exist_ok=True)
print(f"Repository created at: {repo_url}")
api.upload_folder(
folder_path=f'clip-all-layers-tuning-oxford-pets/checkpoint-84',
path_in_repo='',
repo_id='DGurgurov/clip-vit-base-patch32-oxford-pets'
)
# README creation
readme_content = f"""
# CLIP ViT Base Patch32 Fine-tuned on Oxford Pets
This model is a fine-tuned version of OpenAI's CLIP model on the Oxford Pets dataset.
## Training Information
- **Model Name**: openai/clip-vit-base-patch32
- **Dataset**: oxford-pets
- **Training Epochs**: 4
- **Batch Size**: 256
- **Learning Rate**: 3e-6
- **Accuracy**: 93.74%
## License
[MIT]
"""
with open(f'clip-all-layers-tuning-oxford-pets/checkpoint-84/README.md', 'w') as f:
f.write(readme_content)
api.upload_file(
path_or_fileobj=f'clip-all-layers-tuning-oxford-pets/checkpoint-84/README.md',
path_in_repo='README.md',
repo_id='DGurgurov/clip-vit-base-patch32-oxford-pets'
)