File size: 2,194 Bytes
eee4a69 19791d1 5af7312 19791d1 eee4a69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
datasets:
- OleehyO/latex-formulas
metrics:
- bleu
pipeline_tag: image-to-text
tags:
- latex
- formula
---
# im2latex
This model is a VisionEncoderDecoderModel fine-tuned on a dataset for generating LaTeX formulas from images.
## Model Details
- **Encoder**: Swin Transformer
- **Decoder**: GPT-2
- **Framework**: PyTorch
- **DDP (Distributed Data Parallel)**: Used for training
## Training Data
The data is taken from [OleehyO/latex-formulas](https://huggingface.co/datasets/OleehyO/latex-formulas). The data was divided into 80:10:10 for train, val and test. The splits were made as follows:
```python
dataset = load_dataset(OleehyO/latex-formulas, cleaned_formulas)
train_val_split = dataset["train"].train_test_split(test_size=0.2, seed=42)
train_ds = train_val_split["train"]
val_test_split = train_val_split["test"].train_test_split(test_size=0.5, seed=42)
val_ds = val_test_split["train"]
test_ds = val_test_split["test"]
```
## Evaluation Metrics
The model was evaluated on a test set with the following results:
- **Test Loss**: 0.10473818009443304
- **Test BLEU Score**: 0.6661951245257148
## Usage
You can use the model directly with the `transformers` library:
```python
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoFeatureExtractor
import torch
from PIL import Image
# Load model, tokenizer, and feature extractor
model = VisionEncoderDecoderModel.from_pretrained("your-username/your-model-name")
tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
feature_extractor = AutoFeatureExtractor.from_pretrained("your-username/your-model-name")
# Prepare an image
image = Image.open("path/to/your/image.png")
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
# Generate LaTeX formula
generated_ids = model.generate(pixel_values)
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print("Generated LaTeX formula:", generated_texts[0])
```
## Training Script
The training script for this model can be found in the following repository: [GitHub](https://github.com/d-gurgurov/im2latex)
License
[MIT] |