# Fine-tuned XLM-R Model for hebrew Sentiment Analysis | |
This is a fine-tuned XLM-R model for sentiment analysis in hebrew. | |
## Model Details | |
- **Model Name**: XLM-R Sentiment Analysis | |
- **Language**: hebrew | |
- **Fine-tuning Dataset**: DGurgurov/hebrew_sa | |
## Training Details | |
- **Epochs**: 20 | |
- **Batch Size**: 32 (train), 64 (eval) | |
- **Optimizer**: AdamW | |
- **Learning Rate**: 5e-5 | |
## Performance Metrics | |
- **Accuracy**: 0.92106 | |
- **Macro F1**: 0.90782 | |
- **Micro F1**: 0.92106 | |
## Usage | |
To use this model, you can load it with the Hugging Face Transformers library: | |
```python | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
tokenizer = AutoTokenizer.from_pretrained("DGurgurov/xlm-r_hebrew_sentiment") | |
model = AutoModelForSequenceClassification.from_pretrained("DGurgurov/xlm-r_hebrew_sentiment") | |
``` | |
## License | |
[MIT] | |