finetuning-sentiment-model-tweet-OLDsamples

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3200
  • Accuracy Percentage: 0.7738
  • Accuracy Number: 65.0
  • F1: 0.7878
  • Precision: 0.7738
  • Recall: 0.7738

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Percentage Accuracy Number F1 Precision Recall
0.5465 1.0 11 0.5817 0.7857 66.0 0.7854 0.7857 0.7857
0.351 2.0 22 0.4817 0.7976 67.0 0.7930 0.7976 0.7976
0.1612 3.0 33 1.0279 0.75 63.0 0.7618 0.75 0.75
0.0734 4.0 44 1.0266 0.7857 66.0 0.7968 0.7857 0.7857
0.0303 5.0 55 0.8942 0.8095 68.0 0.8150 0.8095 0.8095
0.0083 6.0 66 1.1278 0.8095 68.0 0.8177 0.8095 0.8095
0.0028 7.0 77 1.2560 0.7738 65.0 0.7878 0.7738 0.7738
0.0012 8.0 88 1.2988 0.7738 65.0 0.7878 0.7738 0.7738
0.001 9.0 99 1.3170 0.7857 66.0 0.7997 0.7857 0.7857
0.001 10.0 110 1.3200 0.7738 65.0 0.7878 0.7738 0.7738

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
24
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DaisyQue/finetuning-sentiment-model-tweet-OLDsamples

Finetuned
(72)
this model