metadata
language:
- zh
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- nycu-112-2-deeplearning-hw2
- generated_from_trainer
base_model: MediaTek-Research/Breeze-7B-Instruct-v1_0
datasets:
- DandinPower/ZH-Reading-Comprehension-Breeze-Instruct
model-index:
- name: breeze_7b_lora
results: []
breeze_7b_lora
This model is a fine-tuned version of MediaTek-Research/Breeze-7B-Instruct-v1_0 on the DandinPower/ZH-Reading-Comprehension-Breeze-Instruct dataset. It achieves the following results on the evaluation set:
- Loss: 0.9671
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- total_eval_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 700
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2919 | 0.3690 | 250 | 2.2932 |
2.2105 | 0.7380 | 500 | 2.1866 |
1.9287 | 1.1070 | 750 | 1.9796 |
1.8181 | 1.4760 | 1000 | 1.8416 |
1.6765 | 1.8450 | 1250 | 1.7156 |
1.4271 | 2.2140 | 1500 | 1.6054 |
1.3595 | 2.5830 | 1750 | 1.5071 |
1.2794 | 2.9520 | 2000 | 1.4263 |
1.0636 | 3.3210 | 2250 | 1.3707 |
1.0272 | 3.6900 | 2500 | 1.3044 |
0.8977 | 4.0590 | 2750 | 1.2597 |
0.8923 | 4.4280 | 3000 | 1.2184 |
0.8628 | 4.7970 | 3250 | 1.1737 |
0.6994 | 5.1661 | 3500 | 1.1514 |
0.7201 | 5.5351 | 3750 | 1.1209 |
0.7237 | 5.9041 | 4000 | 1.0931 |
0.6468 | 6.2731 | 4250 | 1.0740 |
0.6052 | 6.6421 | 4500 | 1.0472 |
0.5737 | 7.0111 | 4750 | 1.0360 |
0.5419 | 7.3801 | 5000 | 1.0246 |
0.5539 | 7.7491 | 5250 | 1.0027 |
0.4615 | 8.1181 | 5500 | 0.9947 |
0.4782 | 8.4871 | 5750 | 0.9851 |
0.4809 | 8.8561 | 6000 | 0.9699 |
0.4284 | 9.2251 | 6250 | 0.9738 |
0.4332 | 9.5941 | 6500 | 0.9696 |
0.4341 | 9.9631 | 6750 | 0.9671 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1