|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5418 |
|
- Wer: 0.4178 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 300 |
|
- training_steps: 3000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| No log | 0.0672 | 200 | 3.1445 | 1.0 | |
|
| No log | 0.1344 | 400 | 2.7407 | 1.0000 | |
|
| 4.0188 | 0.2016 | 600 | 1.2700 | 0.8484 | |
|
| 4.0188 | 0.2688 | 800 | 0.9953 | 0.7435 | |
|
| 1.0707 | 0.3360 | 1000 | 0.8647 | 0.6541 | |
|
| 1.0707 | 0.4032 | 1200 | 0.7889 | 0.5784 | |
|
| 1.0707 | 0.4704 | 1400 | 0.7465 | 0.5440 | |
|
| 0.8175 | 0.5376 | 1600 | 0.6828 | 0.5042 | |
|
| 0.8175 | 0.6048 | 1800 | 0.6549 | 0.4952 | |
|
| 0.7148 | 0.6720 | 2000 | 0.6290 | 0.4906 | |
|
| 0.7148 | 0.7392 | 2200 | 0.6113 | 0.4576 | |
|
| 0.7148 | 0.8065 | 2400 | 0.5719 | 0.4405 | |
|
| 0.6374 | 0.8737 | 2600 | 0.5644 | 0.4314 | |
|
| 0.6374 | 0.9409 | 2800 | 0.5483 | 0.4190 | |
|
| 0.6013 | 1.0081 | 3000 | 0.5418 | 0.4178 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|