|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- automatic-speech-recognition |
|
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-xlsr-53-ft-btb-ccv-cy |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4212 |
|
- Wer: 0.3394 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 50000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:| |
|
| No log | 0.0079 | 200 | 3.1755 | 1.0 | |
|
| No log | 0.0157 | 400 | 2.8797 | 1.0 | |
|
| 4.8076 | 0.0236 | 600 | 1.4754 | 0.9040 | |
|
| 4.8076 | 0.0314 | 800 | 1.2526 | 0.8548 | |
|
| 1.1153 | 0.0393 | 1000 | 1.1312 | 0.7888 | |
|
| 1.1153 | 0.0472 | 1200 | 1.0896 | 0.7735 | |
|
| 1.1153 | 0.0550 | 1400 | 1.0288 | 0.7571 | |
|
| 0.8282 | 0.0629 | 1600 | 0.9748 | 0.7254 | |
|
| 0.8282 | 0.0707 | 1800 | 0.9748 | 0.7195 | |
|
| 0.7335 | 0.0786 | 2000 | 0.9883 | 0.7144 | |
|
| 0.7335 | 0.0864 | 2200 | 0.9365 | 0.7062 | |
|
| 0.7335 | 0.0943 | 2400 | 0.9165 | 0.6802 | |
|
| 0.6931 | 0.1022 | 2600 | 0.9170 | 0.6774 | |
|
| 0.6931 | 0.1100 | 2800 | 0.9080 | 0.6692 | |
|
| 0.67 | 0.1179 | 3000 | 0.8609 | 0.6622 | |
|
| 0.67 | 0.1257 | 3200 | 0.8863 | 0.6659 | |
|
| 0.67 | 0.1336 | 3400 | 0.8670 | 0.6611 | |
|
| 0.6282 | 0.1415 | 3600 | 0.8718 | 0.6820 | |
|
| 0.6282 | 0.1493 | 3800 | 0.8617 | 0.6482 | |
|
| 0.6311 | 0.1572 | 4000 | 0.8505 | 0.6597 | |
|
| 0.6311 | 0.1650 | 4200 | 0.8290 | 0.6292 | |
|
| 0.6311 | 0.1729 | 4400 | 0.8300 | 0.6568 | |
|
| 0.615 | 0.1808 | 4600 | 0.8008 | 0.6109 | |
|
| 0.615 | 0.1886 | 4800 | 0.8039 | 0.6045 | |
|
| 0.5785 | 0.1965 | 5000 | 0.7908 | 0.6072 | |
|
| 0.5785 | 0.2043 | 5200 | 0.7868 | 0.6037 | |
|
| 0.5785 | 0.2122 | 5400 | 0.7710 | 0.5988 | |
|
| 0.5928 | 0.2200 | 5600 | 0.7662 | 0.5747 | |
|
| 0.5928 | 0.2279 | 5800 | 0.7673 | 0.5946 | |
|
| 0.5799 | 0.2358 | 6000 | 0.7804 | 0.5990 | |
|
| 0.5799 | 0.2436 | 6200 | 0.7587 | 0.5781 | |
|
| 0.5799 | 0.2515 | 6400 | 0.7495 | 0.5729 | |
|
| 0.5534 | 0.2593 | 6600 | 0.7537 | 0.5769 | |
|
| 0.5534 | 0.2672 | 6800 | 0.7662 | 0.5812 | |
|
| 0.5592 | 0.2751 | 7000 | 0.7571 | 0.5608 | |
|
| 0.5592 | 0.2829 | 7200 | 0.7475 | 0.5635 | |
|
| 0.5592 | 0.2908 | 7400 | 0.7267 | 0.5592 | |
|
| 0.5512 | 0.2986 | 7600 | 0.7362 | 0.5588 | |
|
| 0.5512 | 0.3065 | 7800 | 0.7624 | 0.5811 | |
|
| 0.54 | 0.3144 | 8000 | 0.7657 | 0.5622 | |
|
| 0.54 | 0.3222 | 8200 | 0.7301 | 0.5454 | |
|
| 0.54 | 0.3301 | 8400 | 0.7118 | 0.5382 | |
|
| 0.531 | 0.3379 | 8600 | 0.7253 | 0.5482 | |
|
| 0.531 | 0.3458 | 8800 | 0.7305 | 0.5583 | |
|
| 0.5406 | 0.3536 | 9000 | 0.7098 | 0.5520 | |
|
| 0.5406 | 0.3615 | 9200 | 0.6987 | 0.5372 | |
|
| 0.5406 | 0.3694 | 9400 | 0.7045 | 0.5473 | |
|
| 0.5252 | 0.3772 | 9600 | 0.7025 | 0.5333 | |
|
| 0.5252 | 0.3851 | 9800 | 0.7077 | 0.5462 | |
|
| 0.5156 | 0.3929 | 10000 | 0.7007 | 0.5383 | |
|
| 0.5156 | 0.4008 | 10200 | 0.6947 | 0.5426 | |
|
| 0.5156 | 0.4087 | 10400 | 0.7128 | 0.5361 | |
|
| 0.5181 | 0.4165 | 10600 | 0.6945 | 0.5276 | |
|
| 0.5181 | 0.4244 | 10800 | 0.6986 | 0.5311 | |
|
| 0.5096 | 0.4322 | 11000 | 0.6910 | 0.5293 | |
|
| 0.5096 | 0.4401 | 11200 | 0.6855 | 0.5281 | |
|
| 0.5096 | 0.4480 | 11400 | 0.6890 | 0.5262 | |
|
| 0.5099 | 0.4558 | 11600 | 0.6776 | 0.5298 | |
|
| 0.5099 | 0.4637 | 11800 | 0.6817 | 0.5142 | |
|
| 0.481 | 0.4715 | 12000 | 0.6749 | 0.5318 | |
|
| 0.481 | 0.4794 | 12200 | 0.6648 | 0.5132 | |
|
| 0.481 | 0.4872 | 12400 | 0.6659 | 0.5151 | |
|
| 0.4899 | 0.4951 | 12600 | 0.6744 | 0.5207 | |
|
| 0.4899 | 0.5030 | 12800 | 0.6733 | 0.5229 | |
|
| 0.492 | 0.5108 | 13000 | 0.6457 | 0.5042 | |
|
| 0.492 | 0.5187 | 13200 | 0.6671 | 0.5259 | |
|
| 0.492 | 0.5265 | 13400 | 0.6544 | 0.5179 | |
|
| 0.4782 | 0.5344 | 13600 | 0.6561 | 0.5054 | |
|
| 0.4782 | 0.5423 | 13800 | 0.6382 | 0.4992 | |
|
| 0.507 | 0.5501 | 14000 | 0.6555 | 0.5044 | |
|
| 0.507 | 0.5580 | 14200 | 0.6400 | 0.4955 | |
|
| 0.507 | 0.5658 | 14400 | 0.6468 | 0.5014 | |
|
| 0.4899 | 0.5737 | 14600 | 0.6371 | 0.4972 | |
|
| 0.4899 | 0.5816 | 14800 | 0.6356 | 0.5026 | |
|
| 0.4677 | 0.5894 | 15000 | 0.6386 | 0.5021 | |
|
| 0.4677 | 0.5973 | 15200 | 0.6653 | 0.5190 | |
|
| 0.4677 | 0.6051 | 15400 | 0.6443 | 0.4998 | |
|
| 0.461 | 0.6130 | 15600 | 0.6210 | 0.4897 | |
|
| 0.461 | 0.6208 | 15800 | 0.6396 | 0.5012 | |
|
| 0.4528 | 0.6287 | 16000 | 0.6226 | 0.4933 | |
|
| 0.4528 | 0.6366 | 16200 | 0.6254 | 0.4937 | |
|
| 0.4528 | 0.6444 | 16400 | 0.6289 | 0.5013 | |
|
| 0.451 | 0.6523 | 16600 | 0.6230 | 0.4972 | |
|
| 0.451 | 0.6601 | 16800 | 0.6153 | 0.4957 | |
|
| 0.4444 | 0.6680 | 17000 | 0.6033 | 0.4748 | |
|
| 0.4444 | 0.6759 | 17200 | 0.6154 | 0.4771 | |
|
| 0.4444 | 0.6837 | 17400 | 0.6170 | 0.4859 | |
|
| 0.4357 | 0.6916 | 17600 | 0.6021 | 0.4815 | |
|
| 0.4357 | 0.6994 | 17800 | 0.6071 | 0.4730 | |
|
| 0.4413 | 0.7073 | 18000 | 0.6042 | 0.4766 | |
|
| 0.4413 | 0.7152 | 18200 | 0.6119 | 0.4838 | |
|
| 0.4413 | 0.7230 | 18400 | 0.6046 | 0.4757 | |
|
| 0.4375 | 0.7309 | 18600 | 0.6081 | 0.4833 | |
|
| 0.4375 | 0.7387 | 18800 | 0.6008 | 0.4728 | |
|
| 0.4329 | 0.7466 | 19000 | 0.6008 | 0.4692 | |
|
| 0.4329 | 0.7545 | 19200 | 0.6007 | 0.4822 | |
|
| 0.4329 | 0.7623 | 19400 | 0.5838 | 0.4658 | |
|
| 0.4318 | 0.7702 | 19600 | 0.6008 | 0.4652 | |
|
| 0.4318 | 0.7780 | 19800 | 0.5919 | 0.4665 | |
|
| 0.4265 | 0.7859 | 20000 | 0.5904 | 0.4722 | |
|
| 0.4265 | 0.7937 | 20200 | 0.5923 | 0.4815 | |
|
| 0.4265 | 0.8016 | 20400 | 0.5979 | 0.4661 | |
|
| 0.4321 | 0.8095 | 20600 | 0.5838 | 0.4561 | |
|
| 0.4321 | 0.8173 | 20800 | 0.5825 | 0.4524 | |
|
| 0.4192 | 0.8252 | 21000 | 0.5839 | 0.4552 | |
|
| 0.4192 | 0.8330 | 21200 | 0.5804 | 0.4594 | |
|
| 0.4192 | 0.8409 | 21400 | 0.5891 | 0.4722 | |
|
| 0.4151 | 0.8488 | 21600 | 0.5831 | 0.4525 | |
|
| 0.4151 | 0.8566 | 21800 | 0.5677 | 0.4543 | |
|
| 0.417 | 0.8645 | 22000 | 0.5605 | 0.4468 | |
|
| 0.417 | 0.8723 | 22200 | 0.5705 | 0.4442 | |
|
| 0.417 | 0.8802 | 22400 | 0.5686 | 0.4551 | |
|
| 0.4014 | 0.8881 | 22600 | 0.5752 | 0.4602 | |
|
| 0.4014 | 0.8959 | 22800 | 0.5623 | 0.4453 | |
|
| 0.4024 | 0.9038 | 23000 | 0.5632 | 0.4424 | |
|
| 0.4024 | 0.9116 | 23200 | 0.5681 | 0.4471 | |
|
| 0.4024 | 0.9195 | 23400 | 0.5659 | 0.4511 | |
|
| 0.3899 | 0.9273 | 23600 | 0.5654 | 0.4417 | |
|
| 0.3899 | 0.9352 | 23800 | 0.5691 | 0.4542 | |
|
| 0.3977 | 0.9431 | 24000 | 0.5613 | 0.4434 | |
|
| 0.3977 | 0.9509 | 24200 | 0.5688 | 0.4433 | |
|
| 0.3977 | 0.9588 | 24400 | 0.5749 | 0.4455 | |
|
| 0.3889 | 0.9666 | 24600 | 0.5500 | 0.4318 | |
|
| 0.3889 | 0.9745 | 24800 | 0.5436 | 0.4372 | |
|
| 0.39 | 0.9824 | 25000 | 0.5475 | 0.4388 | |
|
| 0.39 | 0.9902 | 25200 | 0.5532 | 0.4424 | |
|
| 0.39 | 0.9981 | 25400 | 0.5450 | 0.4281 | |
|
| 0.3853 | 1.0059 | 25600 | 0.5463 | 0.4308 | |
|
| 0.3853 | 1.0138 | 25800 | 0.5458 | 0.4278 | |
|
| 0.3413 | 1.0217 | 26000 | 0.5470 | 0.4344 | |
|
| 0.3413 | 1.0295 | 26200 | 0.5358 | 0.4226 | |
|
| 0.3413 | 1.0374 | 26400 | 0.5404 | 0.4231 | |
|
| 0.339 | 1.0452 | 26600 | 0.5345 | 0.4243 | |
|
| 0.339 | 1.0531 | 26800 | 0.5397 | 0.4200 | |
|
| 0.3235 | 1.0609 | 27000 | 0.5379 | 0.4183 | |
|
| 0.3235 | 1.0688 | 27200 | 0.5305 | 0.4275 | |
|
| 0.3235 | 1.0767 | 27400 | 0.5441 | 0.4248 | |
|
| 0.3252 | 1.0845 | 27600 | 0.5362 | 0.4178 | |
|
| 0.3252 | 1.0924 | 27800 | 0.5305 | 0.4202 | |
|
| 0.3301 | 1.1002 | 28000 | 0.5307 | 0.4185 | |
|
| 0.3301 | 1.1081 | 28200 | 0.5402 | 0.4311 | |
|
| 0.3301 | 1.1160 | 28400 | 0.5309 | 0.4179 | |
|
| 0.3087 | 1.1238 | 28600 | 0.5298 | 0.4214 | |
|
| 0.3087 | 1.1317 | 28800 | 0.5331 | 0.4215 | |
|
| 0.3222 | 1.1395 | 29000 | 0.5273 | 0.4145 | |
|
| 0.3222 | 1.1474 | 29200 | 0.5283 | 0.4131 | |
|
| 0.3222 | 1.1553 | 29400 | 0.5257 | 0.4116 | |
|
| 0.3227 | 1.1631 | 29600 | 0.5169 | 0.4084 | |
|
| 0.3227 | 1.1710 | 29800 | 0.5185 | 0.4107 | |
|
| 0.309 | 1.1788 | 30000 | 0.5076 | 0.4028 | |
|
| 0.309 | 1.1867 | 30200 | 0.5178 | 0.4054 | |
|
| 0.309 | 1.1945 | 30400 | 0.5226 | 0.4122 | |
|
| 0.3138 | 1.2024 | 30600 | 0.5227 | 0.4073 | |
|
| 0.3138 | 1.2103 | 30800 | 0.5130 | 0.4050 | |
|
| 0.3083 | 1.2181 | 31000 | 0.5168 | 0.4113 | |
|
| 0.3083 | 1.2260 | 31200 | 0.5054 | 0.4004 | |
|
| 0.3083 | 1.2338 | 31400 | 0.5144 | 0.4067 | |
|
| 0.2981 | 1.2417 | 31600 | 0.5082 | 0.3992 | |
|
| 0.2981 | 1.2496 | 31800 | 0.5134 | 0.3961 | |
|
| 0.2952 | 1.2574 | 32000 | 0.4970 | 0.3999 | |
|
| 0.2952 | 1.2653 | 32200 | 0.5029 | 0.4006 | |
|
| 0.2952 | 1.2731 | 32400 | 0.4980 | 0.4002 | |
|
| 0.2995 | 1.2810 | 32600 | 0.4992 | 0.4046 | |
|
| 0.2995 | 1.2889 | 32800 | 0.4969 | 0.3912 | |
|
| 0.3046 | 1.2967 | 33000 | 0.4943 | 0.3933 | |
|
| 0.3046 | 1.3046 | 33200 | 0.4883 | 0.3932 | |
|
| 0.3046 | 1.3124 | 33400 | 0.4965 | 0.3935 | |
|
| 0.2972 | 1.3203 | 33600 | 0.4910 | 0.3942 | |
|
| 0.2972 | 1.3281 | 33800 | 0.5008 | 0.4097 | |
|
| 0.3093 | 1.3360 | 34000 | 0.4958 | 0.3957 | |
|
| 0.3093 | 1.3439 | 34200 | 0.5045 | 0.4018 | |
|
| 0.3093 | 1.3517 | 34400 | 0.4925 | 0.3970 | |
|
| 0.2947 | 1.3596 | 34600 | 0.4829 | 0.3905 | |
|
| 0.2947 | 1.3674 | 34800 | 0.4870 | 0.3952 | |
|
| 0.2801 | 1.3753 | 35000 | 0.4897 | 0.3937 | |
|
| 0.2801 | 1.3832 | 35200 | 0.5007 | 0.3997 | |
|
| 0.2801 | 1.3910 | 35400 | 0.4823 | 0.3849 | |
|
| 0.2772 | 1.3989 | 35600 | 0.4849 | 0.3912 | |
|
| 0.2772 | 1.4067 | 35800 | 0.4845 | 0.3882 | |
|
| 0.281 | 1.4146 | 36000 | 0.4829 | 0.3842 | |
|
| 0.281 | 1.4225 | 36200 | 0.4815 | 0.3859 | |
|
| 0.281 | 1.4303 | 36400 | 0.4772 | 0.3808 | |
|
| 0.2697 | 1.4382 | 36600 | 0.4870 | 0.3914 | |
|
| 0.2697 | 1.4460 | 36800 | 0.4770 | 0.3866 | |
|
| 0.2766 | 1.4539 | 37000 | 0.4787 | 0.3821 | |
|
| 0.2766 | 1.4617 | 37200 | 0.4793 | 0.3810 | |
|
| 0.2766 | 1.4696 | 37400 | 0.4739 | 0.3803 | |
|
| 0.2905 | 1.4775 | 37600 | 0.4725 | 0.3811 | |
|
| 0.2905 | 1.4853 | 37800 | 0.4727 | 0.3783 | |
|
| 0.2799 | 1.4932 | 38000 | 0.4705 | 0.3777 | |
|
| 0.2799 | 1.5010 | 38200 | 0.4659 | 0.3751 | |
|
| 0.2799 | 1.5089 | 38400 | 0.4691 | 0.3743 | |
|
| 0.267 | 1.5168 | 38600 | 0.4690 | 0.3664 | |
|
| 0.267 | 1.5246 | 38800 | 0.4633 | 0.3681 | |
|
| 0.2632 | 1.5325 | 39000 | 0.4651 | 0.3726 | |
|
| 0.2632 | 1.5403 | 39200 | 0.4690 | 0.3674 | |
|
| 0.2632 | 1.5482 | 39400 | 0.4613 | 0.3715 | |
|
| 0.2716 | 1.5561 | 39600 | 0.4655 | 0.3697 | |
|
| 0.2716 | 1.5639 | 39800 | 0.4597 | 0.3648 | |
|
| 0.2651 | 1.5718 | 40000 | 0.4550 | 0.3662 | |
|
| 0.2651 | 1.5796 | 40200 | 0.4539 | 0.3676 | |
|
| 0.2651 | 1.5875 | 40400 | 0.4543 | 0.3675 | |
|
| 0.2659 | 1.5953 | 40600 | 0.4556 | 0.3623 | |
|
| 0.2659 | 1.6032 | 40800 | 0.4633 | 0.3685 | |
|
| 0.2559 | 1.6111 | 41000 | 0.4529 | 0.3608 | |
|
| 0.2559 | 1.6189 | 41200 | 0.4535 | 0.3639 | |
|
| 0.2559 | 1.6268 | 41400 | 0.4511 | 0.3637 | |
|
| 0.2629 | 1.6346 | 41600 | 0.4556 | 0.3605 | |
|
| 0.2629 | 1.6425 | 41800 | 0.4571 | 0.3639 | |
|
| 0.259 | 1.6504 | 42000 | 0.4620 | 0.3690 | |
|
| 0.259 | 1.6582 | 42200 | 0.4550 | 0.3635 | |
|
| 0.259 | 1.6661 | 42400 | 0.4522 | 0.3584 | |
|
| 0.2594 | 1.6739 | 42600 | 0.4495 | 0.3589 | |
|
| 0.2594 | 1.6818 | 42800 | 0.4453 | 0.3562 | |
|
| 0.2538 | 1.6897 | 43000 | 0.4438 | 0.3555 | |
|
| 0.2538 | 1.6975 | 43200 | 0.4494 | 0.3567 | |
|
| 0.2538 | 1.7054 | 43400 | 0.4444 | 0.3538 | |
|
| 0.2512 | 1.7132 | 43600 | 0.4455 | 0.3530 | |
|
| 0.2512 | 1.7211 | 43800 | 0.4454 | 0.3522 | |
|
| 0.2358 | 1.7289 | 44000 | 0.4445 | 0.3520 | |
|
| 0.2358 | 1.7368 | 44200 | 0.4416 | 0.3500 | |
|
| 0.2358 | 1.7447 | 44400 | 0.4420 | 0.3490 | |
|
| 0.2418 | 1.7525 | 44600 | 0.4386 | 0.3479 | |
|
| 0.2418 | 1.7604 | 44800 | 0.4355 | 0.3461 | |
|
| 0.2421 | 1.7682 | 45000 | 0.4386 | 0.3437 | |
|
| 0.2421 | 1.7761 | 45200 | 0.4348 | 0.3458 | |
|
| 0.2421 | 1.7840 | 45400 | 0.4335 | 0.3435 | |
|
| 0.2418 | 1.7918 | 45600 | 0.4309 | 0.3444 | |
|
| 0.2418 | 1.7997 | 45800 | 0.4321 | 0.3425 | |
|
| 0.2424 | 1.8075 | 46000 | 0.4300 | 0.3408 | |
|
| 0.2424 | 1.8154 | 46200 | 0.4301 | 0.3423 | |
|
| 0.2424 | 1.8233 | 46400 | 0.4339 | 0.3407 | |
|
| 0.228 | 1.8311 | 46600 | 0.4317 | 0.3429 | |
|
| 0.228 | 1.8390 | 46800 | 0.4300 | 0.3433 | |
|
| 0.2532 | 1.8468 | 47000 | 0.4249 | 0.3439 | |
|
| 0.2532 | 1.8547 | 47200 | 0.4257 | 0.3430 | |
|
| 0.2532 | 1.8625 | 47400 | 0.4264 | 0.3408 | |
|
| 0.2347 | 1.8704 | 47600 | 0.4254 | 0.3409 | |
|
| 0.2347 | 1.8783 | 47800 | 0.4237 | 0.3391 | |
|
| 0.2265 | 1.8861 | 48000 | 0.4247 | 0.3395 | |
|
| 0.2265 | 1.8940 | 48200 | 0.4253 | 0.3389 | |
|
| 0.2265 | 1.9018 | 48400 | 0.4246 | 0.3390 | |
|
| 0.2262 | 1.9097 | 48600 | 0.4227 | 0.3379 | |
|
| 0.2262 | 1.9176 | 48800 | 0.4228 | 0.3389 | |
|
| 0.2358 | 1.9254 | 49000 | 0.4225 | 0.3391 | |
|
| 0.2358 | 1.9333 | 49200 | 0.4224 | 0.3390 | |
|
| 0.2358 | 1.9411 | 49400 | 0.4215 | 0.3390 | |
|
| 0.231 | 1.9490 | 49600 | 0.4215 | 0.3400 | |
|
| 0.231 | 1.9569 | 49800 | 0.4212 | 0.3393 | |
|
| 0.2331 | 1.9647 | 50000 | 0.4212 | 0.3394 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|