metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3890
- Wer: 0.3056
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 100000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.043 | 0.0393 | 1000 | 1.1074 | 0.7791 |
0.716 | 0.0786 | 2000 | 0.9459 | 0.7145 |
0.6667 | 0.1179 | 3000 | 0.8828 | 0.6616 |
0.6238 | 0.1572 | 4000 | 0.8482 | 0.6633 |
0.591 | 0.1965 | 5000 | 0.8121 | 0.6215 |
0.588 | 0.2358 | 6000 | 0.7926 | 0.5952 |
0.5732 | 0.2751 | 7000 | 0.7582 | 0.5707 |
0.5557 | 0.3144 | 8000 | 0.7591 | 0.5600 |
0.5587 | 0.3536 | 9000 | 0.7245 | 0.5741 |
0.531 | 0.3929 | 10000 | 0.7107 | 0.5469 |
0.5275 | 0.4322 | 11000 | 0.7102 | 0.5448 |
0.5101 | 0.4715 | 12000 | 0.6905 | 0.5404 |
0.5215 | 0.5108 | 13000 | 0.6824 | 0.5255 |
0.5293 | 0.5501 | 14000 | 0.6682 | 0.5163 |
0.4981 | 0.5894 | 15000 | 0.6615 | 0.5140 |
0.4891 | 0.6287 | 16000 | 0.6634 | 0.5249 |
0.4813 | 0.6680 | 17000 | 0.6469 | 0.5105 |
0.4799 | 0.7073 | 18000 | 0.6421 | 0.5014 |
0.4799 | 0.7466 | 19000 | 0.6144 | 0.4819 |
0.471 | 0.7859 | 20000 | 0.6184 | 0.4914 |
0.4644 | 0.8252 | 21000 | 0.6190 | 0.4983 |
0.4645 | 0.8645 | 22000 | 0.6085 | 0.4784 |
0.4506 | 0.9038 | 23000 | 0.6067 | 0.4700 |
0.4439 | 0.9431 | 24000 | 0.5994 | 0.4773 |
0.4476 | 0.9824 | 25000 | 0.5946 | 0.4710 |
0.3905 | 1.0217 | 26000 | 0.5904 | 0.4539 |
0.3807 | 1.0609 | 27000 | 0.5839 | 0.4573 |
0.3782 | 1.1002 | 28000 | 0.5694 | 0.4477 |
0.3777 | 1.1395 | 29000 | 0.5712 | 0.4581 |
0.3879 | 1.1788 | 30000 | 0.5694 | 0.4539 |
0.3817 | 1.2181 | 31000 | 0.5558 | 0.4414 |
0.3755 | 1.2574 | 32000 | 0.5634 | 0.4343 |
0.3629 | 1.2967 | 33000 | 0.5455 | 0.4342 |
0.3636 | 1.3360 | 34000 | 0.5472 | 0.4346 |
0.3566 | 1.3753 | 35000 | 0.5467 | 0.4322 |
0.3683 | 1.4146 | 36000 | 0.5441 | 0.4325 |
0.3581 | 1.4539 | 37000 | 0.5279 | 0.4192 |
0.3448 | 1.4932 | 38000 | 0.5341 | 0.4195 |
0.3558 | 1.5325 | 39000 | 0.5194 | 0.4212 |
0.3492 | 1.5718 | 40000 | 0.5243 | 0.4139 |
0.3461 | 1.6111 | 41000 | 0.5144 | 0.4046 |
0.3412 | 1.6504 | 42000 | 0.5345 | 0.4237 |
0.3424 | 1.6897 | 43000 | 0.5192 | 0.4092 |
0.341 | 1.7289 | 44000 | 0.5131 | 0.4056 |
0.3428 | 1.7682 | 45000 | 0.5110 | 0.4030 |
0.3337 | 1.8075 | 46000 | 0.5063 | 0.4051 |
0.3286 | 1.8468 | 47000 | 0.5045 | 0.3976 |
0.3422 | 1.8861 | 48000 | 0.4938 | 0.4027 |
0.3271 | 1.9254 | 49000 | 0.4979 | 0.3910 |
0.3313 | 1.9647 | 50000 | 0.4907 | 0.3974 |
0.3069 | 2.0040 | 51000 | 0.4899 | 0.3852 |
0.2771 | 2.0433 | 52000 | 0.4836 | 0.3845 |
0.2705 | 2.0826 | 53000 | 0.4929 | 0.3825 |
0.2654 | 2.1219 | 54000 | 0.4843 | 0.3813 |
0.2794 | 2.1612 | 55000 | 0.4820 | 0.3781 |
0.2644 | 2.2005 | 56000 | 0.4742 | 0.3755 |
0.2624 | 2.2398 | 57000 | 0.4685 | 0.3681 |
0.2689 | 2.2791 | 58000 | 0.4650 | 0.3665 |
0.2584 | 2.3184 | 59000 | 0.4691 | 0.3658 |
0.2535 | 2.3577 | 60000 | 0.4627 | 0.3713 |
0.2623 | 2.3970 | 61000 | 0.4667 | 0.3670 |
0.2502 | 2.4362 | 62000 | 0.4592 | 0.3681 |
0.2593 | 2.4755 | 63000 | 0.4569 | 0.3676 |
0.2521 | 2.5148 | 64000 | 0.4576 | 0.3590 |
0.2415 | 2.5541 | 65000 | 0.4510 | 0.3542 |
0.2349 | 2.5934 | 66000 | 0.4454 | 0.3534 |
0.2482 | 2.6327 | 67000 | 0.4531 | 0.3586 |
0.2527 | 2.6720 | 68000 | 0.4418 | 0.3522 |
0.2473 | 2.7113 | 69000 | 0.4437 | 0.3583 |
0.2334 | 2.7506 | 70000 | 0.4338 | 0.3457 |
0.2314 | 2.7899 | 71000 | 0.4286 | 0.3456 |
0.2318 | 2.8292 | 72000 | 0.4275 | 0.3371 |
0.2347 | 2.8685 | 73000 | 0.4266 | 0.3408 |
0.2313 | 2.9078 | 74000 | 0.4238 | 0.3354 |
0.2253 | 2.9471 | 75000 | 0.4199 | 0.3316 |
0.217 | 2.9864 | 76000 | 0.4222 | 0.3333 |
0.194 | 3.0257 | 77000 | 0.4252 | 0.3342 |
0.181 | 3.0650 | 78000 | 0.4228 | 0.3364 |
0.187 | 3.1042 | 79000 | 0.4197 | 0.3356 |
0.1855 | 3.1435 | 80000 | 0.4215 | 0.3410 |
0.1886 | 3.1828 | 81000 | 0.4177 | 0.3319 |
0.1821 | 3.2221 | 82000 | 0.4128 | 0.3293 |
0.1786 | 3.2614 | 83000 | 0.4102 | 0.3226 |
0.1758 | 3.3007 | 84000 | 0.4147 | 0.3264 |
0.171 | 3.3400 | 85000 | 0.4131 | 0.3200 |
0.1767 | 3.3793 | 86000 | 0.4098 | 0.3172 |
0.1804 | 3.4186 | 87000 | 0.4091 | 0.3209 |
0.1699 | 3.4579 | 88000 | 0.4044 | 0.3179 |
0.1645 | 3.4972 | 89000 | 0.4041 | 0.3167 |
0.1707 | 3.5365 | 90000 | 0.4008 | 0.3202 |
0.1838 | 3.5758 | 91000 | 0.3981 | 0.3165 |
0.1653 | 3.6151 | 92000 | 0.3987 | 0.3132 |
0.1679 | 3.6544 | 93000 | 0.3982 | 0.3110 |
0.1631 | 3.6937 | 94000 | 0.3904 | 0.3074 |
0.1561 | 3.7330 | 95000 | 0.3934 | 0.3091 |
0.1699 | 3.7723 | 96000 | 0.3917 | 0.3068 |
0.1591 | 3.8115 | 97000 | 0.3918 | 0.3057 |
0.1609 | 3.8508 | 98000 | 0.3908 | 0.3050 |
0.1675 | 3.8901 | 99000 | 0.3902 | 0.3059 |
0.1666 | 3.9294 | 100000 | 0.3890 | 0.3056 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1