metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. It achieves the following results on the evaluation set:
- Loss: 0.4404
- Wer: 0.3235
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.0566 | 100 | 3.5966 | 1.0 |
No log | 0.1133 | 200 | 3.5808 | 1.0 |
No log | 0.1699 | 300 | 2.2642 | 0.9884 |
No log | 0.2265 | 400 | 1.0231 | 0.7426 |
3.6826 | 0.2831 | 500 | 0.9161 | 0.6457 |
3.6826 | 0.3398 | 600 | 0.7942 | 0.5827 |
3.6826 | 0.3964 | 700 | 0.7551 | 0.5417 |
3.6826 | 0.4530 | 800 | 0.7243 | 0.5352 |
3.6826 | 0.5096 | 900 | 0.6665 | 0.4985 |
0.4714 | 0.5663 | 1000 | 0.6403 | 0.4863 |
0.4714 | 0.6229 | 1100 | 0.6220 | 0.4727 |
0.4714 | 0.6795 | 1200 | 0.6100 | 0.4642 |
0.4714 | 0.7361 | 1300 | 0.5863 | 0.4442 |
0.4714 | 0.7928 | 1400 | 0.5668 | 0.4384 |
0.3661 | 0.8494 | 1500 | 0.5753 | 0.4421 |
0.3661 | 0.9060 | 1600 | 0.5641 | 0.4311 |
0.3661 | 0.9626 | 1700 | 0.5466 | 0.4153 |
0.3661 | 1.0193 | 1800 | 0.5304 | 0.4023 |
0.3661 | 1.0759 | 1900 | 0.5280 | 0.3938 |
0.3069 | 1.1325 | 2000 | 0.5220 | 0.3902 |
0.3069 | 1.1891 | 2100 | 0.5064 | 0.3929 |
0.3069 | 1.2458 | 2200 | 0.5033 | 0.3823 |
0.3069 | 1.3024 | 2300 | 0.4920 | 0.3773 |
0.3069 | 1.3590 | 2400 | 0.4955 | 0.3737 |
0.264 | 1.4156 | 2500 | 0.4955 | 0.3739 |
0.264 | 1.4723 | 2600 | 0.4846 | 0.3651 |
0.264 | 1.5289 | 2700 | 0.4761 | 0.3645 |
0.264 | 1.5855 | 2800 | 0.4672 | 0.3627 |
0.264 | 1.6421 | 2900 | 0.4645 | 0.3640 |
0.2498 | 1.6988 | 3000 | 0.4652 | 0.3589 |
0.2498 | 1.7554 | 3100 | 0.4596 | 0.3534 |
0.2498 | 1.8120 | 3200 | 0.4505 | 0.3510 |
0.2498 | 1.8686 | 3300 | 0.4490 | 0.3522 |
0.2498 | 1.9253 | 3400 | 0.4460 | 0.3456 |
0.2304 | 1.9819 | 3500 | 0.4440 | 0.3405 |
0.2304 | 2.0385 | 3600 | 0.4493 | 0.3425 |
0.2304 | 2.0951 | 3700 | 0.4386 | 0.3374 |
0.2304 | 2.1518 | 3800 | 0.4424 | 0.3381 |
0.2304 | 2.2084 | 3900 | 0.4385 | 0.3373 |
0.1947 | 2.2650 | 4000 | 0.4394 | 0.3355 |
0.1947 | 2.3216 | 4100 | 0.4354 | 0.3324 |
0.1947 | 2.3783 | 4200 | 0.4345 | 0.3325 |
0.1947 | 2.4349 | 4300 | 0.4343 | 0.3331 |
0.1947 | 2.4915 | 4400 | 0.4517 | 0.3349 |
0.1996 | 2.5481 | 4500 | 0.4571 | 0.3328 |
0.1996 | 2.6048 | 4600 | 0.4423 | 0.3255 |
0.1996 | 2.6614 | 4700 | 0.4405 | 0.3254 |
0.1996 | 2.7180 | 4800 | 0.4437 | 0.3238 |
0.1996 | 2.7746 | 4900 | 0.4401 | 0.3232 |
0.2024 | 2.8313 | 5000 | 0.4404 | 0.3235 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1