metadata
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. It achieves the following results on the evaluation set:
- Loss: 0.4593
- Wer: 0.3553
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2600
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 0.0566 | 100 | 3.5994 | 1.0 |
No log | 0.1133 | 200 | 3.0224 | 1.0 |
No log | 0.1699 | 300 | 1.9627 | 0.9061 |
No log | 0.2265 | 400 | 0.9921 | 0.6952 |
3.6184 | 0.2831 | 500 | 0.8504 | 0.6158 |
3.6184 | 0.3398 | 600 | 0.7936 | 0.5964 |
3.6184 | 0.3964 | 700 | 0.7601 | 0.5606 |
3.6184 | 0.4530 | 800 | 0.6909 | 0.5128 |
3.6184 | 0.5096 | 900 | 0.6617 | 0.4916 |
0.4662 | 0.5663 | 1000 | 0.6467 | 0.4812 |
0.4662 | 0.6229 | 1100 | 0.6144 | 0.4639 |
0.4662 | 0.6795 | 1200 | 0.5942 | 0.4537 |
0.4662 | 0.7361 | 1300 | 0.5675 | 0.4351 |
0.4662 | 0.7928 | 1400 | 0.5539 | 0.4230 |
0.3508 | 0.8494 | 1500 | 0.5448 | 0.4144 |
0.3508 | 0.9060 | 1600 | 0.5326 | 0.4066 |
0.3508 | 0.9626 | 1700 | 0.5155 | 0.3989 |
0.3508 | 1.0193 | 1800 | 0.5067 | 0.3856 |
0.3508 | 1.0759 | 1900 | 0.4916 | 0.3724 |
0.2774 | 1.1325 | 2000 | 0.4855 | 0.3697 |
0.2774 | 1.1891 | 2100 | 0.4798 | 0.3661 |
0.2774 | 1.2458 | 2200 | 0.4774 | 0.3646 |
0.2774 | 1.3024 | 2300 | 0.4699 | 0.3585 |
0.2774 | 1.3590 | 2400 | 0.4651 | 0.3550 |
0.2328 | 1.4156 | 2500 | 0.4611 | 0.3570 |
0.2328 | 1.4723 | 2600 | 0.4593 | 0.3553 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1