DewiBrynJones's picture
End of training
91c0069 verified
|
raw
history blame
2.2 kB
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - DewiBrynJones/banc-trawsgrifiadau-bangor-clean
metrics:
  - wer
model-index:
  - name: whisper-large-v3-ft-btb-cy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DewiBrynJones/banc-trawsgrifiadau-bangor-clean default
          type: DewiBrynJones/banc-trawsgrifiadau-bangor-clean
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.2817565771990433

whisper-large-v3-ft-btb-cy

This model is a fine-tuned version of openai/whisper-large-v3 on the DewiBrynJones/banc-trawsgrifiadau-bangor-clean default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5500
  • Wer: 0.2818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3452 1.1390 1000 0.4484 0.3166
0.2029 2.2779 2000 0.4125 0.2898
0.1143 3.4169 3000 0.4329 0.2814
0.0515 4.5558 4000 0.4906 0.2832
0.0193 5.6948 5000 0.5500 0.2818

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1