bert-base-finetuned-ynat

This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3745
  • F1: 0.8704

Model description

๋‰ด์Šค ์ œ๋ชฉ์„ ์ž…๋ ฅํ•˜๋ฉด ๋‰ด์Šค์˜ ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ์˜ˆ์ธก
label_map = {
'LABEL_0': 'IT/๊ณผํ•™',
'LABEL_1': '๊ฒฝ์ œ',
'LABEL_2': '์‚ฌํšŒ',
'LABEL_3': '์ƒํ™œ๋ฌธํ™”',
'LABEL_4': '์„ธ๊ณ„',
'LABEL_5': '์Šคํฌ์ธ ',
'LABEL_6': '์ •์น˜'
}

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1
No log 1.0 179 0.3909 0.8655
No log 2.0 358 0.3788 0.8684
0.3774 3.0 537 0.3629 0.8699
0.3774 4.0 716 0.3776 0.8667
0.3774 5.0 895 0.3745 0.8704

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
40
Safetensors
Model size
111M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Doowon96/bert-base-finetuned-ynat

Base model

klue/bert-base
Finetuned
(60)
this model