unit-1-rl / config.json
Dotanoob's picture
Upload unit-1 trained LunarLander agent
e34a77f
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efa3b0e30a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efa3b0e3130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efa3b0e31c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efa3b0e3250>", "_build": "<function ActorCriticPolicy._build at 0x7efa3b0e32e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efa3b0e3370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efa3b0e3400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efa3b0e3490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efa3b0e3520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efa3b0e35b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efa3b0e3640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efa3b0e36d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efa3b287640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701158964424817545, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMKpLzDhWq6UUm9O3u20zg4efq60G3uuAAAgD8AAIA/M8OiuingHrp6GsE5u8wbNYZwkjsA39+4AACAPwAAgD8zlaM8SDeququKbDrxL101rGc7Oh6+h7kAAIA/AACAP03Rt75LETU/AmlwvmuMw77c+te+Tk6APAAAAAAAAAAAANhJveGS5jlNltC7D9gmPZp6i7sGs9m7AACAPwAAgD/z6ba9UBKsPq53Nz4aibO+cp82PSb6j70AAAAAAAAAAGYRwjwf/Zy5MKthO6mQRDh6ezy6w+MMugAAgD8AAIA/muWmu4l1uT/m5AO+Y7bDPgFqvjtgXuw8AAAAAAAAAADN5PI7BcH3uxTklT07Yhe+21VYvYZbAb8AAIA/AACAP81MUL1cc1C6JsyKNpXVlTF8aos7nsWotQAAgD8AAIA/M2LwPI+2aLo+/eg60927NaUVZTrKuwi6AACAPwAAgD9m8Fs9uD22PUay5L17F2++CjVSPem6HjwAAAAAAAAAACakrz0beDU/uscSvTJ+or5ntEU70scJvQAAAAAAAAAA5rliPuQzLj/Lq8m9DLmpvi0c6D0jEWe9AAAAAAAAAAAzr+u9BA9BPvBm2z3HBUu+kjNgOrkqIr0AAAAAAAAAAGaYZbzDyRG6uWS/O3afGjhXoq26AEI7NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/2Z9Vmz0KMAWyUTUMBjAF0lEdAlFbESRKYiXV9lChoBkdAcC6+mm+Cb2gHTS0BaAhHQJRYSZof0Vd1fZQoaAZHQHBsyWAwwkBoB02hAWgIR0CUWJ5xR2r5dX2UKGgGR0BuG5o4+8oQaAdNIAFoCEdAlFjwFs54nnV9lChoBkdAb38s052hZmgHTTQBaAhHQJRZY/4ZdfN1fZQoaAZHQHCxF8LKFIxoB01FAWgIR0CUW+B42S+ydX2UKGgGR0BwXueDnNgSaAdNNwFoCEdAlFvrpNbkfnV9lChoBkdAcmHF2V3Ux2gHTY4BaAhHQJRcOlsP8Q91fZQoaAZHQHLLFbNbC79oB01QAWgIR0CUXES1E3KkdX2UKGgGR0Bx+2coYvWZaAdNggFoCEdAlF0tPLxI8XV9lChoBkdAcDEzBhx5s2gHTTgBaAhHQJRfQ1Gb1AZ1fZQoaAZHQHGZr70nPVxoB01kAWgIR0CUX266asp5dX2UKGgGR0BvFZQHiWE9aAdNKgFoCEdAlF/zMzMzM3V9lChoBkdAcAsvtMPBi2gHTSoBaAhHQJRyTiEQGwB1fZQoaAZHQGz0J/wy6+ZoB00ZAWgIR0CUclaOPvKEdX2UKGgGR0BvMEpmVZ9vaAdNIQFoCEdAlHLKNMoMKHV9lChoBkdAcUqI0IkZ8GgHTRYBaAhHQJR0Gbz9S/F1fZQoaAZHQG9chzNliBpoB00UAWgIR0CUdNMYdhiLdX2UKGgGR0Bt6zBGhEjPaAdNLgFoCEdAlHVBG2Cul3V9lChoBkdAcIH00WM0g2gHTUwBaAhHQJR1ojjaPCF1fZQoaAZHQHC5cK1G9YhoB00GAWgIR0CUdtXokiUxdX2UKGgGR0BwQnbDdgv2aAdNCAFoCEdAlHbv5P/JeXV9lChoBkdAcG4C7btZ3mgHTTUBaAhHQJR45+z+m3x1fZQoaAZHQHFCluWKMvRoB00eAWgIR0CUfCbgTAWSdX2UKGgGR0BwqXgJkXk6aAdNZAFoCEdAlH0UpZwGW3V9lChoBkdAbZiUSIxgzGgHTSwBaAhHQJR9UvWYnfF1fZQoaAZHQHDlhk/bCaZoB00QAWgIR0CUfgMspXp4dX2UKGgGR0BxI/3nIQvpaAdNEAFoCEdAlIA/029+PXV9lChoBkdAbdZ/ffoA4mgHTVgBaAhHQJSBY8EFGG51fZQoaAZHQGyobF0gbIdoB01hAWgIR0CUgf7muDBedX2UKGgGR0Bw5EigTRICaAdNlgFoCEdAlIRR6OYIB3V9lChoBkdAcOFL5AQg92gHTSsBaAhHQJSEiOPvKEF1fZQoaAZHQG7mrsjVx0doB01IAWgIR0CUhM5aNdZ8dX2UKGgGR0Bgju2Xsw+MaAdN6ANoCEdAlIUcI/qxDHV9lChoBkdAcfcL0Bfa6GgHTXQBaAhHQJSHYYyfthN1fZQoaAZHQHBz+7L+xW1oB01KAmgIR0CUh/pKSPludX2UKGgGR0BzDIM+eOGTaAdNbgFoCEdAlImMcABDHHV9lChoBkdAcAI/Ue+23WgHTRwBaAhHQJSLXPt2LYR1fZQoaAZHQHAX4xHoX9BoB00KAWgIR0CUjPU+cH4XdX2UKGgGR0BwebILgGbDaAdNPQFoCEdAlIz8XN1QqXV9lChoBkdAcko/oq0+kmgHTV4BaAhHQJSNj3i704B1fZQoaAZHQCSceCCjDbdoB0vcaAhHQJSNyuLaVUx1fZQoaAZHQG05Wwmmce9oB029AWgIR0CUjq49HMEBdX2UKGgGR0ButhaTwDvFaAdNIQFoCEdAlI6+5jH4oXV9lChoBkdAckbvEjxCpmgHTWcBaAhHQJSO3kOqebx1fZQoaAZHQHD7GPYFqztoB01HAWgIR0CUj7CHARChdX2UKGgGR0BvjG+ZgG8maAdNIAFoCEdAlJA4qkM1CXV9lChoBkdAbd4Ja7mMfmgHTToBaAhHQJSRRLteD4B1fZQoaAZHQG1X+V9nbqRoB00bAWgIR0CUkhys0YTCdX2UKGgGR0BwTd8stkFwaAdNXgFoCEdAlJKoMOPNmnV9lChoBkdAcdRYHPeHi2gHTVYBaAhHQJSUdfLLZBd1fZQoaAZHQG98noX9BKNoB01BAWgIR0CUlPf4REncdX2UKGgGR0BulsUXYUWVaAdNXAFoCEdAlJfyP2f03HV9lChoBkdAcZ0FGoaUA2gHTUcBaAhHQJSZoU7CBPN1fZQoaAZHQG4LTYNAkcFoB02BAWgIR0CUm21Muez2dX2UKGgGR0BzAhv99+gEaAdNdwFoCEdAlJupUo8ZDXV9lChoBkdAcQGISDh99mgHTXEBaAhHQJSvVIoVmBh1fZQoaAZHQG3ec14xDb9oB00aAWgIR0CUsI3y7PIGdX2UKGgGR0Bx+sLKFIuoaAdNxAFoCEdAlLCpHRTjvXV9lChoBkdAQN30btJFs2gHS/poCEdAlLGkBsANonV9lChoBkdAcSG0Mw1zhmgHTV4BaAhHQJSx1OoHcDd1fZQoaAZHQEqhxLCemN1oB0vwaAhHQJSx1bcGkep1fZQoaAZHQHJc0fozN2VoB01SAWgIR0CUsoVFx4pudX2UKGgGR0Bu7c2WIGhVaAdNyQFoCEdAlLNM8xKxs3V9lChoBkdAZQlOjZcs2GgHTegDaAhHQJS1MlUp/gB1fZQoaAZHQHLAPIfbKzRoB03bAWgIR0CUtlV9nbqRdX2UKGgGR0BxQDOC5EtvaAdNJAJoCEdAlLeh15jYqXV9lChoBkdAcQV73PAwf2gHTU0BaAhHQJS59cQiA2B1fZQoaAZHQHLbVyvLX+VoB01DAmgIR0CUuq6FM7EHdX2UKGgGR0ByPbiyY5T7aAdNOQFoCEdAlLrmxhUip3V9lChoBkdAcEVBBzFMqWgHTSIBaAhHQJS73fWMCLd1fZQoaAZHQHAPilBQemxoB0v4aAhHQJS95dyDIzZ1fZQoaAZHQHCS6Mzdk8RoB01SAWgIR0CUvh3FkxyodX2UKGgGR0By7UWsRxtIaAdNLwFoCEdAlL5EMspXqHV9lChoBkdAcCnVopQUH2gHTSoBaAhHQJTAqARTS9d1fZQoaAZHQG8eMOPNmlJoB00WAWgIR0CUwTBTn7pFdX2UKGgGR0ByxzDl5nlGaAdNgAFoCEdAlMRBuXNTtXV9lChoBkdAcN4k7OmixmgHTToBaAhHQJTFSJMxoIx1fZQoaAZHQHJdXVsk6cRoB01UAWgIR0CUxV/YraufdX2UKGgGR0BxV7642CNCaAdNrQFoCEdAlMaw0XP7enV9lChoBkdAcj9Nb1RLsmgHTdUBaAhHQJTG1Ex7AtZ1fZQoaAZHQHC4CKekHlhoB01XAWgIR0CUx4Qgs9SudX2UKGgGR0Btjga1kUblaAdNFAFoCEdAlMmrCJoCdXV9lChoBkdAbuTYUWVNYmgHTRgBaAhHQJTJ7IHTqjd1fZQoaAZHQHJB9fw7T2FoB00lAWgIR0CUyiNc4YJmdX2UKGgGR0BxRDabnX/YaAdNjgFoCEdAlMs/BWPtD3V9lChoBkdAceq6zE74jGgHTY8BaAhHQJTL4nRb8m91fZQoaAZHQHIZ5Dqnm7toB00oAWgIR0CUzCSsbNr1dX2UKGgGR0Bx+PljmSyMaAdNlAJoCEdAlM2LkwN9Y3V9lChoBkdAceKZi/fwZ2gHTf4BaAhHQJTP33K0UoN1fZQoaAZHQG+ZzIFNcnpoB006AWgIR0CU0R3trsSkdX2UKGgGR0BxMXy+Yc//aAdNJAFoCEdAlNHMSoOx0XV9lChoBkdAcD8RsMy8BmgHTbQBaAhHQJTSEk6cRUZ1fZQoaAZHQHGR6sU7CBRoB00zAmgIR0CU0x80UGmldX2UKGgGR0Bvtxzo2XLNaAdNiwFoCEdAlNSh+az/qHV9lChoBkdAcaGNqgyuZGgHTQ8BaAhHQJTUyNVBD5V1fZQoaAZHQHKX3fZVXFNoB00fAWgIR0CU1sciGFi8dX2UKGgGR0BvRUYqG1x9aAdNmwFoCEdAlNfghOgxrXV9lChoBkdAbiBXz19ORGgHTUABaAhHQJTZM7xNIsl1fZQoaAZHQHG5MtPHktFoB025AWgIR0CU2/yC4BmxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}