metadata
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-SwinT-Indian-Food-Classification-v3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: Indian-Food-Images
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9436769394261424
finetuned-SwinT-Indian-Food-Classification-v3
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the Indian-Food-Images dataset. It achieves the following results on the evaluation set:
- Loss: 0.2910
- Accuracy: 0.9437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9511 | 0.3 | 100 | 0.6092 | 0.8172 |
0.6214 | 0.6 | 200 | 0.4406 | 0.8672 |
0.7355 | 0.9 | 300 | 0.3665 | 0.8927 |
0.6078 | 1.2 | 400 | 0.3285 | 0.9065 |
0.439 | 1.5 | 500 | 0.3855 | 0.8916 |
0.3644 | 1.8 | 600 | 0.4082 | 0.8969 |
0.4748 | 2.1 | 700 | 0.3496 | 0.9022 |
0.3966 | 2.4 | 800 | 0.3626 | 0.8905 |
0.5799 | 2.7 | 900 | 0.4833 | 0.8767 |
0.2995 | 3.0 | 1000 | 0.3387 | 0.9044 |
0.3152 | 3.3 | 1100 | 0.3739 | 0.9097 |
0.3284 | 3.6 | 1200 | 0.4217 | 0.8916 |
0.3631 | 3.9 | 1300 | 0.4118 | 0.9044 |
0.219 | 4.2 | 1400 | 0.3721 | 0.9139 |
0.2874 | 4.5 | 1500 | 0.3030 | 0.9288 |
0.2819 | 4.8 | 1600 | 0.4056 | 0.9150 |
0.1755 | 5.11 | 1700 | 0.4039 | 0.9097 |
0.2462 | 5.41 | 1800 | 0.3550 | 0.9118 |
0.1737 | 5.71 | 1900 | 0.3444 | 0.9150 |
0.174 | 6.01 | 2000 | 0.3667 | 0.9160 |
0.1536 | 6.31 | 2100 | 0.3301 | 0.9288 |
0.0911 | 6.61 | 2200 | 0.3390 | 0.9299 |
0.0907 | 6.91 | 2300 | 0.2923 | 0.9288 |
0.0921 | 7.21 | 2400 | 0.3502 | 0.9256 |
0.1662 | 7.51 | 2500 | 0.3197 | 0.9341 |
0.0607 | 7.81 | 2600 | 0.3092 | 0.9362 |
0.111 | 8.11 | 2700 | 0.3146 | 0.9394 |
0.0588 | 8.41 | 2800 | 0.3069 | 0.9341 |
0.131 | 8.71 | 2900 | 0.2971 | 0.9405 |
0.1903 | 9.01 | 3000 | 0.3078 | 0.9384 |
0.2116 | 9.31 | 3100 | 0.3112 | 0.9341 |
0.1415 | 9.61 | 3200 | 0.2956 | 0.9405 |
0.1106 | 9.91 | 3300 | 0.2910 | 0.9437 |
Framework versions
- Transformers 4.21.2
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1