Edit model card

wav2vec2-large-xls-r-300m-hi-CV7

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6588
  • Wer: 0.2987

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

NA

Training hyperparameters

The following hyperparameters were used during training: #

  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
12.809 1.36 200 6.2066 1.0
4.3402 2.72 400 3.5184 1.0
3.4365 4.08 600 3.2779 1.0
1.8643 5.44 800 0.9875 0.6270
0.7504 6.8 1000 0.6382 0.4666
0.5328 8.16 1200 0.6075 0.4505
0.4364 9.52 1400 0.5785 0.4215
0.3777 10.88 1600 0.6279 0.4227
0.3374 12.24 1800 0.6536 0.4192
0.3236 13.6 2000 0.5911 0.4047
0.2877 14.96 2200 0.5955 0.4097
0.2643 16.33 2400 0.5923 0.3744
0.2421 17.68 2600 0.6307 0.3814
0.2218 19.05 2800 0.6036 0.3764
0.2046 20.41 3000 0.6286 0.3797
0.191 21.77 3200 0.6517 0.3889
0.1856 23.13 3400 0.6193 0.3661
0.1721 24.49 3600 0.7034 0.3727
0.1656 25.85 3800 0.6293 0.3591
0.1532 27.21 4000 0.6075 0.3611
0.1507 28.57 4200 0.6313 0.3565
0.1381 29.93 4400 0.6564 0.3578
0.1359 31.29 4600 0.6724 0.3543
0.1248 32.65 4800 0.6789 0.3512
0.1198 34.01 5000 0.6442 0.3539
0.1125 35.37 5200 0.6676 0.3419
0.1036 36.73 5400 0.7017 0.3435
0.0982 38.09 5600 0.6828 0.3319
0.0971 39.45 5800 0.6112 0.3351
0.0968 40.81 6000 0.6424 0.3252
0.0893 42.18 6200 0.6707 0.3304
0.0878 43.54 6400 0.6432 0.3236
0.0827 44.89 6600 0.6696 0.3240
0.0788 46.26 6800 0.6564 0.3180
0.0753 47.62 7000 0.6574 0.3130
0.0674 48.98 7200 0.6698 0.3175
0.0676 50.34 7400 0.6441 0.3142
0.0626 51.7 7600 0.6642 0.3121
0.0617 53.06 7800 0.6615 0.3117
0.0599 54.42 8000 0.6634 0.3059
0.0538 55.78 8200 0.6464 0.3033
0.0571 57.14 8400 0.6503 0.3018
0.0491 58.5 8600 0.6625 0.3025
0.0511 59.86 8800 0.6588 0.2987

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7

Finetunes
4 models

Dataset used to train DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7

Evaluation results