metadata
language:
- hsb
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- hsb
- robust-speech-event
- model_for_talk
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-hsb-v3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: hsb
metrics:
- name: Test WER
type: wer
value: 0.4763681592039801
- name: Test CER
type: cer
value: 0.11194945177476305
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: hsb
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
wav2vec2-large-xls-r-300m-hsb-v3
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HSB dataset. It achieves the following results on the evaluation set:
- Loss: 0.6549
- Wer: 0.4827
Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hsb-v3 --dataset mozilla-foundation/common_voice_8_0 --config hsb --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
Upper Sorbian (hsb) language not found in speech-recognition-community-v2/dev_data!
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00045
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.8951 | 3.23 | 100 | 3.6396 | 1.0 |
3.314 | 6.45 | 200 | 3.2331 | 1.0 |
3.1931 | 9.68 | 300 | 3.0947 | 0.9906 |
1.7079 | 12.9 | 400 | 0.8865 | 0.8499 |
0.6859 | 16.13 | 500 | 0.7994 | 0.7529 |
0.4804 | 19.35 | 600 | 0.7783 | 0.7069 |
0.3506 | 22.58 | 700 | 0.6904 | 0.6321 |
0.2695 | 25.81 | 800 | 0.6519 | 0.5926 |
0.222 | 29.03 | 900 | 0.7041 | 0.5720 |
0.1828 | 32.26 | 1000 | 0.6608 | 0.5513 |
0.1474 | 35.48 | 1100 | 0.7129 | 0.5319 |
0.1269 | 38.71 | 1200 | 0.6664 | 0.5056 |
0.1077 | 41.94 | 1300 | 0.6712 | 0.4942 |
0.0934 | 45.16 | 1400 | 0.6467 | 0.4879 |
0.0819 | 48.39 | 1500 | 0.6549 | 0.4827 |
Framework versions
- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0