Edit model card
YAML Metadata Error: "model-index[0].results[0].metrics" is required

wav2vec2-large-xls-r-300m-maltese

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2994
  • Wer: 0.2781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1800
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0174 9.01 1000 3.0552 1.0
1.0446 18.02 2000 0.6708 0.7577
0.7995 27.03 3000 0.4202 0.4770
0.6978 36.04 4000 0.3054 0.3494
0.6189 45.05 5000 0.2878 0.3154
0.5667 54.05 6000 0.3114 0.3286
0.5173 63.06 7000 0.3085 0.3021
0.4682 72.07 8000 0.3058 0.2969
0.451 81.08 9000 0.3146 0.2907
0.4213 90.09 10000 0.3030 0.2881
0.4005 99.1 11000 0.3001 0.2789

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0

Evaluation Script

!python eval.py
--model_id DrishtiSharma/wav2vec2-large-xls-r-300m-maltese
--dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs

Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-large-xls-r-300m-maltese

Evaluation results

Model card error

This model's model-index metadata is invalid: Schema validation error. "model-index[0].results[0].metrics" is required