Edit model card
YAML Metadata Error: "language[0]" must only contain lowercase characters
YAML Metadata Error: "language[0]" with value "pa-IN" is not valid. It must be an ISO 639-1, 639-2 or 639-3 code (two/three letters), or a special value like "code", "multilingual". If you want to use BCP-47 identifiers, you can specify them in language_bcp47.

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0855
  • Wer: 0.4755

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

Punjabi language isn't available in speech-recognition-community-v2/dev_data

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1200
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.4607 9.26 500 2.7746 1.0416
0.3442 18.52 1000 0.9114 0.5911
0.2213 27.78 1500 0.9687 0.5751
0.1242 37.04 2000 1.0204 0.5461
0.0998 46.3 2500 1.0250 0.5233
0.0727 55.56 3000 1.1072 0.5382
0.0605 64.81 3500 1.0588 0.5073
0.0458 74.07 4000 1.0818 0.5069
0.0338 83.33 4500 1.0948 0.5108
0.0223 92.59 5000 1.0986 0.4775

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
20
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-large-xls-r-300m-pa-IN-dx1

Evaluation results