layoutlmv3-base-fine_tuned-FUNSD_dataset
This model is a fine-tuned version of microsoft/layoutlmv3-base on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2956
- Precision: 0.8979
- Recall: 0.9086
- F1: 0.9032
- Accuracy: 0.8462
Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Document%20AI/Document%20Layout/LayoutLMv3%20with%20FUNSD/Fine%20tuning%20%26%20Evaluation%20-%20LayoutLMv3%20with%20FUNSD.ipynb
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology.
Training and evaluation data
Dataset Source: https://huggingface.co/datasets/nielsr/funsd-layoutlmv3
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2000
Training results
Train Loss | Epoch | Step | Valid. Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2149 | 1.33 | 100 | 0.2402 | 0.7469 | 0.8212 | 0.7823 | 0.7758 |
0.1466 | 2.67 | 200 | 0.1869 | 0.8161 | 0.8838 | 0.8486 | 0.8273 |
0.1122 | 4.0 | 300 | 0.1902 | 0.8538 | 0.8997 | 0.8761 | 0.8316 |
0.0757 | 5.33 | 400 | 0.1857 | 0.8354 | 0.8927 | 0.8631 | 0.8349 |
0.0427 | 6.67 | 500 | 0.2091 | 0.8792 | 0.8897 | 0.8844 | 0.8446 |
0.0495 | 8.0 | 600 | 0.2235 | 0.8825 | 0.9031 | 0.8927 | 0.8370 |
0.0369 | 9.33 | 700 | 0.2532 | 0.8826 | 0.9146 | 0.8983 | 0.8349 |
0.0329 | 10.67 | 800 | 0.2576 | 0.8829 | 0.8992 | 0.8910 | 0.8474 |
0.0229 | 12.0 | 900 | 0.2579 | 0.8827 | 0.8937 | 0.8882 | 0.8443 |
0.0219 | 13.33 | 1000 | 0.2710 | 0.8710 | 0.8987 | 0.8846 | 0.8347 |
0.0191 | 14.67 | 1100 | 0.2582 | 0.8889 | 0.9061 | 0.8974 | 0.8454 |
0.0179 | 16.0 | 1200 | 0.2646 | 0.8870 | 0.9006 | 0.8938 | 0.8356 |
0.0135 | 17.33 | 1300 | 0.2798 | 0.8949 | 0.9180 | 0.9063 | 0.8512 |
0.007 | 18.67 | 1400 | 0.2944 | 0.8988 | 0.9091 | 0.9039 | 0.8455 |
0.0064 | 20.0 | 1500 | 0.2822 | 0.8938 | 0.9071 | 0.9004 | 0.8452 |
0.0089 | 21.33 | 1600 | 0.3003 | 0.8941 | 0.9101 | 0.9020 | 0.8484 |
0.0099 | 22.67 | 1700 | 0.3008 | 0.8942 | 0.9071 | 0.9006 | 0.8439 |
0.0069 | 24.0 | 1800 | 0.2965 | 0.8942 | 0.9071 | 0.9006 | 0.8386 |
0.0048 | 25.33 | 1900 | 0.2973 | 0.9027 | 0.9076 | 0.9051 | 0.8501 |
0.0069 | 26.67 | 2000 | 0.2956 | 0.8979 | 0.9086 | 0.9032 | 0.8462 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for DunnBC22/layoutlmv3-base-fine_tuned-FUNSD_dataset
Base model
microsoft/layoutlmv3-baseEvaluation results
- Precision on funsd-layoutlmv3test set self-reported0.898
- Recall on funsd-layoutlmv3test set self-reported0.909
- F1 on funsd-layoutlmv3test set self-reported0.903
- Accuracy on funsd-layoutlmv3test set self-reported0.846