DunnBC22's picture
update model card README.md
324b170
|
raw
history blame
2.03 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: mbart-large-50-English_French_Translation_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-50-English_French_Translation_v2
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3902
- Bleu: 35.1914
- Rouge: {'rouge1': 0.641952430267112, 'rouge2': 0.4572909036472911, 'rougeL': 0.607001331434416, 'rougeLsum': 0.6068905123656807}
- Meteor: {'meteor': 0.5916610499445853}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Meteor |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:------------------------------:|
| 1.1677 | 1.0 | 750 | 0.3902 | 35.1914 | {'rouge1': 0.6419485887304972, 'rouge2': 0.45727961744986984, 'rougeL': 0.6069956611472951, 'rougeLsum': 0.6068859187671477} | {'meteor': 0.5916768663368279} |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.12.1