|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
- rouge |
|
model-index: |
|
- name: mbart-large-50-English_French_Translation_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mbart-large-50-English_French_Translation_v2 |
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3902 |
|
- Bleu: 35.1914 |
|
- Rouge: {'rouge1': 0.641952430267112, 'rouge2': 0.4572909036472911, 'rougeL': 0.607001331434416, 'rougeLsum': 0.6068905123656807} |
|
- Meteor: {'meteor': 0.5916610499445853} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Meteor | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:------------------------------:| |
|
| 1.1677 | 1.0 | 750 | 0.3902 | 35.1914 | {'rouge1': 0.6419485887304972, 'rouge2': 0.45727961744986984, 'rougeL': 0.6069956611472951, 'rougeLsum': 0.6068859187671477} | {'meteor': 0.5916768663368279} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.12.1 |
|
|