File size: 3,973 Bytes
ef11a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: wav2vec2-base-Speech_Emotion_Recognition
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-Speech_Emotion_Recognition

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7264
- Accuracy: 0.7539
- Weighted f1: 0.7514
- Micro f1: 0.7539
- Macro f1: 0.7529
- Weighted recall: 0.7539
- Micro recall: 0.7539
- Macro recall: 0.7577
- Weighted precision: 0.7565
- Micro precision: 0.7539
- Macro precision: 0.7558

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 1.5581        | 0.98  | 43   | 1.4046          | 0.4653   | 0.4080      | 0.4653   | 0.4174   | 0.4653          | 0.4653       | 0.4793       | 0.5008             | 0.4653          | 0.4974          |
| 1.5581        | 1.98  | 86   | 1.1566          | 0.5997   | 0.5836      | 0.5997   | 0.5871   | 0.5997          | 0.5997       | 0.6093       | 0.6248             | 0.5997          | 0.6209          |
| 1.5581        | 2.98  | 129  | 0.9733          | 0.6883   | 0.6845      | 0.6883   | 0.6860   | 0.6883          | 0.6883       | 0.6923       | 0.7012             | 0.6883          | 0.7009          |
| 1.5581        | 3.98  | 172  | 0.8313          | 0.7399   | 0.7392      | 0.7399   | 0.7409   | 0.7399          | 0.7399       | 0.7417       | 0.7415             | 0.7399          | 0.7432          |
| 1.5581        | 4.98  | 215  | 0.8708          | 0.7028   | 0.6963      | 0.7028   | 0.6970   | 0.7028          | 0.7028       | 0.7081       | 0.7148             | 0.7028          | 0.7114          |
| 1.5581        | 5.98  | 258  | 0.7969          | 0.7297   | 0.7267      | 0.7297   | 0.7277   | 0.7297          | 0.7297       | 0.7333       | 0.7393             | 0.7297          | 0.7382          |
| 1.5581        | 6.98  | 301  | 0.7349          | 0.7603   | 0.7613      | 0.7603   | 0.7631   | 0.7603          | 0.7603       | 0.7635       | 0.7699             | 0.7603          | 0.7702          |
| 1.5581        | 7.98  | 344  | 0.7714          | 0.7469   | 0.7444      | 0.7469   | 0.7456   | 0.7469          | 0.7469       | 0.7485       | 0.7554             | 0.7469          | 0.7563          |
| 1.5581        | 8.98  | 387  | 0.7183          | 0.7630   | 0.7615      | 0.7630   | 0.7631   | 0.7630          | 0.7630       | 0.7652       | 0.7626             | 0.7630          | 0.7637          |
| 1.5581        | 9.98  | 430  | 0.7264          | 0.7539   | 0.7514      | 0.7539   | 0.7529   | 0.7539          | 0.7539       | 0.7577       | 0.7565             | 0.7539          | 0.7558          |


### Framework versions

- Transformers 4.26.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3