Edit model card

Wav2vec 2.0 trained with CORAA Portuguese Dataset

This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following CORAA dataset

Use this model


from transformers import AutoTokenizer, Wav2Vec2ForCTC
  
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")

model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")

Results

For the results check the CORAA article

Example test with Common Voice Dataset

dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")

resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
Downloads last month
445
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results