|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-NER-finetuned-ner-cerec |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-NER-finetuned-ner-cerec |
|
|
|
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1511 |
|
- Precision: 0.8652 |
|
- Recall: 0.8531 |
|
- F1: 0.8592 |
|
- Accuracy: 0.9790 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 45 | 0.4929 | 0.6532 | 0.5664 | 0.6067 | 0.9237 | |
|
| No log | 2.0 | 90 | 0.3090 | 0.8145 | 0.7063 | 0.7566 | 0.9497 | |
|
| No log | 3.0 | 135 | 0.2477 | 0.8433 | 0.7902 | 0.8159 | 0.9625 | |
|
| No log | 4.0 | 180 | 0.2209 | 0.8169 | 0.8112 | 0.8140 | 0.9669 | |
|
| No log | 5.0 | 225 | 0.1906 | 0.8369 | 0.8252 | 0.8310 | 0.9739 | |
|
| No log | 6.0 | 270 | 0.1568 | 0.8662 | 0.8601 | 0.8632 | 0.9784 | |
|
| No log | 7.0 | 315 | 0.1532 | 0.8732 | 0.8671 | 0.8702 | 0.9790 | |
|
| No log | 8.0 | 360 | 0.1530 | 0.8671 | 0.8671 | 0.8671 | 0.9790 | |
|
| No log | 9.0 | 405 | 0.1526 | 0.8723 | 0.8601 | 0.8662 | 0.9790 | |
|
| No log | 10.0 | 450 | 0.1511 | 0.8652 | 0.8531 | 0.8592 | 0.9790 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.10.1 |
|
- Tokenizers 0.11.0 |
|
|