metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
base_model: bert-base-uncased
model-index:
- name: bert-base-uncased-finetuned-ner
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- type: precision
value: 0.9144678979771328
name: Precision
- type: recall
value: 0.9305291419621882
name: Recall
- type: f1
value: 0.9224286110341003
name: F1
- type: accuracy
value: 0.9825726404753206
name: Accuracy
bert-base-uncased-finetuned-ner
This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0618
- Precision: 0.9145
- Recall: 0.9305
- F1: 0.9224
- Accuracy: 0.9826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 220 | 0.0809 | 0.8923 | 0.9051 | 0.8987 | 0.9784 |
No log | 2.0 | 440 | 0.0643 | 0.9108 | 0.9262 | 0.9184 | 0.9817 |
0.1657 | 3.0 | 660 | 0.0618 | 0.9145 | 0.9305 | 0.9224 | 0.9826 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.12.0
- Datasets 2.7.1
- Tokenizers 0.11.0