metadata
library_name: peft
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: wise-sloth-138
results: []
wise-sloth-138
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6040
- Hamming Loss: 0.3021
- Zero One Loss: 0.98
- Jaccard Score: 0.8999
- Hamming Loss Optimised: 0.1123
- Hamming Loss Threshold: 0.8210
- Zero One Loss Optimised: 0.9563
- Zero One Loss Threshold: 0.5645
- Jaccard Score Optimised: 0.8787
- Jaccard Score Threshold: 0.4638
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4188771076578358e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9321315533118193,0.8355607204472777) and epsilon=1e-07 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 100 | 0.6418 | 0.3628 | 0.9875 | 0.8809 | 0.1168 | 0.7112 | 0.9637 | 0.5894 | 0.8877 | 0.1791 |
No log | 2.0 | 200 | 0.6040 | 0.3021 | 0.98 | 0.8999 | 0.1123 | 0.8210 | 0.9563 | 0.5645 | 0.8787 | 0.4638 |
Framework versions
- PEFT 0.13.2
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0