metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod11
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: test
args: id
metrics:
- type: wer
value: 0.9777378318584071
name: Wer
wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod11
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 1.3207
- Wer: 0.9777
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 1.0 | 464 | 2.8781 | 1.0 |
3.005 | 2.0 | 928 | 2.5395 | 1.0 |
2.7477 | 3.0 | 1392 | 1.6528 | 0.9993 |
1.9398 | 4.0 | 1856 | 1.3991 | 0.9854 |
1.4528 | 5.0 | 2320 | 1.3207 | 0.9777 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2