|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xtreme_s |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod8 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: xtreme_s |
|
type: xtreme_s |
|
config: fleurs.id_id |
|
split: test |
|
args: fleurs.id_id |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.42037120191588084 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod8 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the xtreme_s dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9283 |
|
- Wer: 0.4204 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 600 |
|
- num_epochs: 180 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 4.7974 | 15.58 | 300 | 2.8438 | 1.0 | |
|
| 1.0661 | 31.17 | 600 | 0.7520 | 0.5781 | |
|
| 0.1697 | 46.75 | 900 | 0.8342 | 0.5181 | |
|
| 0.1081 | 62.34 | 1200 | 0.8508 | 0.5010 | |
|
| 0.0833 | 77.92 | 1500 | 0.9216 | 0.5014 | |
|
| 0.0616 | 93.51 | 1800 | 0.9659 | 0.4859 | |
|
| 0.0463 | 109.09 | 2100 | 0.9606 | 0.4646 | |
|
| 0.0356 | 124.68 | 2400 | 0.9255 | 0.4578 | |
|
| 0.0291 | 140.26 | 2700 | 0.9889 | 0.4503 | |
|
| 0.0218 | 155.84 | 3000 | 0.9336 | 0.4371 | |
|
| 0.0182 | 171.43 | 3300 | 0.9283 | 0.4204 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|