EzraWilliam's picture
End of training
563ef70 verified
|
raw
history blame
2.31 kB
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
datasets:
- xtreme_s
metrics:
- wer
model-index:
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod9
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: xtreme_s
type: xtreme_s
config: fleurs.id_id
split: test
args: fleurs.id_id
metrics:
- name: Wer
type: wer
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod9
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the xtreme_s dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8522
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| No log | 1.0 | 20 | 2.9101 | 1.0 |
| No log | 2.0 | 40 | 2.8625 | 1.0 |
| No log | 3.0 | 60 | 2.8728 | 1.0 |
| No log | 4.0 | 80 | 2.8608 | 1.0 |
| No log | 5.0 | 100 | 2.8697 | 1.0 |
| No log | 6.0 | 120 | 2.8550 | 1.0 |
| No log | 7.0 | 140 | 2.8668 | 1.0 |
| No log | 8.0 | 160 | 2.8452 | 1.0 |
| No log | 9.0 | 180 | 2.8746 | 1.0 |
| No log | 10.0 | 200 | 2.8522 | 1.0 |
### Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2