EzraWilliam's picture
Upload tokenizer
31e669c verified
|
raw
history blame
2.37 kB
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod13
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: test
args: id
metrics:
- type: wer
value: 0.5390394542772862
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod13
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_13_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5309
- Wer: 0.5390
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 9
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.6611 | 0.9 | 500 | 2.9516 | 1.0 |
| 2.9146 | 1.8 | 1000 | 2.8772 | 1.0 |
| 2.816 | 2.7 | 1500 | 2.4276 | 1.0 |
| 1.9159 | 3.6 | 2000 | 1.0100 | 0.9116 |
| 1.1756 | 4.5 | 2500 | 0.7206 | 0.7062 |
| 0.9638 | 5.4 | 3000 | 0.6271 | 0.6327 |
| 0.8657 | 6.29 | 3500 | 0.5767 | 0.5855 |
| 0.7978 | 7.19 | 4000 | 0.5478 | 0.5578 |
| 0.7513 | 8.09 | 4500 | 0.5329 | 0.5421 |
| 0.7503 | 8.99 | 5000 | 0.5309 | 0.5390 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2