EzraWilliam's picture
Upload tokenizer
bf7e7a4 verified
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod17
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: id
          split: test
          args: id
        metrics:
          - type: wer
            value: 0.3274336283185841
            name: Wer

wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod17

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3395
  • Wer: 0.3274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9137 1.0 278 2.8202 1.0
0.8546 2.0 556 0.6314 0.6728
0.4738 3.0 834 0.4380 0.4837
0.3338 4.0 1112 0.4024 0.4490
0.2557 5.0 1390 0.3622 0.4295
0.1972 6.0 1668 0.3381 0.3795
0.1644 7.0 1946 0.3632 0.3706
0.1442 8.0 2224 0.3352 0.3578
0.1287 9.0 2502 0.3441 0.3496
0.1122 10.0 2780 0.3501 0.3437
0.1035 11.0 3058 0.3389 0.3322
0.0961 12.0 3336 0.3395 0.3274

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1