EzraWilliam's picture
End of training
c60ce76 verified
|
raw
history blame
2.49 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod17
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 0.33453171091445427

wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod17

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3245
  • Wer: 0.3345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9058 1.0 278 2.8200 1.0
1.4695 2.0 556 0.7046 0.6722
0.5298 3.0 834 0.4448 0.5104
0.3601 4.0 1112 0.3744 0.4301
0.2761 5.0 1390 0.3398 0.4128
0.2092 6.0 1668 0.3356 0.3740
0.1726 7.0 1946 0.3276 0.3538
0.1461 8.0 2224 0.3210 0.3638
0.1344 9.0 2502 0.3173 0.3441
0.1173 10.0 2780 0.3215 0.3466
0.1082 11.0 3058 0.3272 0.3402
0.0981 12.0 3336 0.3245 0.3345

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1