metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
- common_voice_13_0
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod18
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: common_voice_13_0
type: common_voice_13_0
config: id
split: test
args: id
metrics:
- type: wer
value: 0.3394174041297935
name: Wer
wav2vec2-xlsr-53-CV-demo-google-colab-Ezra_William_Prod18
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3716
- Wer: 0.3394
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.8966 | 1.0 | 278 | 2.7818 | 1.0 |
0.7308 | 2.0 | 556 | 0.5667 | 0.5799 |
0.4205 | 3.0 | 834 | 0.3971 | 0.4407 |
0.3017 | 4.0 | 1112 | 0.3938 | 0.4124 |
0.2371 | 5.0 | 1390 | 0.3519 | 0.3909 |
0.1977 | 6.0 | 1668 | 0.3638 | 0.3797 |
0.1631 | 7.0 | 1946 | 0.3623 | 0.3773 |
0.1445 | 8.0 | 2224 | 0.3490 | 0.3654 |
0.1329 | 9.0 | 2502 | 0.3658 | 0.3509 |
0.1162 | 10.0 | 2780 | 0.3683 | 0.3477 |
0.109 | 11.0 | 3058 | 0.3728 | 0.3410 |
0.0999 | 12.0 | 3336 | 0.3716 | 0.3394 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1